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EXECUTIVE SUMMARY

Quantifying the amount of sediment, nutrients and pesticides (via a load) entering into the Great Barrier

Reef (GBR) is a primary focus for Water Quality Improvement Plans that aim to halt or reverse the decline

in reef health over the next 5 years. Although substantial work has been undertaken in the literature to

define a load under varying conditions and assumptions, the methods currently available do not adequately

address all aspects of uncertainty surrounding the load estimate. This reduces the ability to usefully inform

future monitoring activities and to report on the status of, or trends in, loads.

The approach we present in this report is an extension to the regression or rating curve methodology,

which incorporates three primary aspects of uncertainty specific to the calculation of riverine loads. These

represent

• Measurement Error, the uncertainty in the measured flow and concentration observed at a particular

site or at different spatial locations within a site;

• Stochastic Uncertainty, arising from the fact that not all flow and concentration data are collected; and

• Knowledge Uncertainty, arising from our lack of understanding of the underlying hydrological pro-

cesses and the ensuing choice of load estimation algorithm.

The loads methodology that we propose takes on a 4 step process.

1. Estimation steps for flow

2. Estimation steps for concentration

3. Estimation of the load

4. Calculation of the standard error of the load

The first step involves predicting flow at regular time intervals using a time series model such that the model

captures all of the peak flows. The predicted flow is then matched to concentration sampling times and

used only when flow was not collected at that specific time interval. The second step involves the prediction

of concentration using a generalised additive model (GAM) that incorporates all important covariates in

an attempt to capture the underlying hydrological processes concerned with the flow and transportation

of sediment and nutrient loads in an attempt to account for knowledge uncertainty. These predictions are

made at regular time intervals and matched with the predicted flow at the first stage ensuring that flow

is capped at the maximum flow observed and extrapolation from the model does not occur. Predicting

at regular time intervals is the key to accounting for stochastic uncertainty. We refer to this part of the
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estimation process as the generalised rating curve approach. We then obtain an estimate of the load

in the third step using the predicted concentration and predicted flow and incorporating a unit-conversion

constant for time interval used. Standard errors are then computed during the fourth step of this process

which incorporate both measurement error and errors due to the spatial location of sampling sites.

The generalised rating curve approach is novel as it seeks to represent a number of important system

processes for GBR catchments to account for expected or implied system behaviours:

1. First Flush, the first significant channelised flow in a water year accompanied by high concentrations

(represented as a percentile of flow and used in the calculation of other system processes).

2. Rising/Falling Limb, which allows higher or lower concentrations on the rising limb when runoff en-

ergies are higher and sediment supply may also be higher. This is usually represented at shorter

time-scales than exhaustion, which is parameterised for between-event variations. This covariate is

based on the flush (process 1) defined for that period.

3. Exhaustion, representing the limited supply of sediments and nutrients due to previous events (repre-

sented by a discounted flow term.

4. Hysteresis, representing complex interactions between flow and concentration with strong historical

effects and dependence captured by non-linear terms for flow and incorporating hydrological pro-

cesses 1-3.

5. Overbank Flow, described as flow that goes overbank in flood events (represented by a correction

factor, which is used to adjust the calculation). This is work currently investigated by (Wallace et al.,

2008).

The methodologies are applied to two real case studies and a simulation study to evaluate the method, make

inferences and compare the results to standard loads based estimators. The first case study discusses 3

sites within the Burdekin catchment, representing data collected at three different spatial scales: Inkerman

Bridge (daily sampling at the end of catchment), Myuna station (automatic depth based sampling at the

end of sub-catchment) and Mistake Creek (intermittent manual sampling from community groups). The

second case study investigates the Euramo site along the Tully River. In both investigations we found that

the standard ratio estimators (e.g Beale) matched closely with our modelled estimates and in most cases

fell within the 95% confidence intervals calculated, particularly when the defined measurement and spatial

errors were larger.

Specific modelling results for the Burdekin and Tully catchments are summarised as follows:
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1. Inkerman Bridge (1989-2000 time series)

• 24.2% of TSS on average can be attributed to the rise of an event, while 14.5% are associated

with the fall compared with no samples appearing on the rise or the fall.

• Exhaustion appears strongly linked with the movement of TSS in the system while a dilution

effect is evident with the movement of NOx during frequent and large events.

• A subtle seasonal effect associated with NOx in the system where decreases are indicated be-

tween October and January, increases between January and May followed by another slight

decrease from May through to September are indicated.

2. Myuna Station, Bowen River (2005/06 Water Year)

• A preliminary indication of sediment accumulation stabilising with multiple large events requiring

further exploration.

• Increases in flow are indicative of increases in both TSS and NOx.

• A strong seasonal term exhibiting increases in NOx from November through to January in a

typical water year.

3. Mistake Creek (2005/06 Water Year)

• Models fit to this data are similar to the average type estimators as they include a constant term.

4. Euramo Site, Tully River (2000-2008)

• Progressive increases in TSS concentration as flow increases during wetter periods.

• A possible dilution effect of TSS occurring during large events.

• Low estimated TSS concentration across the 8 years compared to estimates produced from

the Burdekin. When compared with the average and ratio estimators, modelled estimates were

considerably lower, which could be attributed to the irregular sampling conducted at this site.

For the simulation study, we investigated the performance of our methodology and compared it to four

standard loads estimators: Average, Extrapolation, Beale and Ratio estimators. We based the simulation

study on 5 years worth of data and investigated a range of generalised additive models. Scenarios that were

investigated consisted of stratified sampling, event only monitoring, equal rates of ambient and event based

monitoring, ambient only monitoring and community based sampling. Simulations from both a wet and dry

site using a long term United States Geological Survey dataset was conducted under these scenarios and
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summary statistics were obtained. The advantages of the USGS data set is that it is high frequency and

thus provides a natural gold standard measure of the true load. We found the following:

• Conclusions from a wet site

– The results show some variability between years, sampling scenarios and methods however, it

is clear that across most years the generalised additive models investigated perform reasonably

well and in fact, for event only scenarios outperform the ratio and average based estimators

suggesting that their capacity in predicting loads using event based data only is promising.

• Conclusions from a dry site

– The results for the dry catchment are quite contrasting to the wet catchment. Little variability

in estimates is indicated between years, sampling scenarios and methods, apart from the event

only and community sampling scenarios. Overall, the majority of methods perform well. In event

only situations however, the GAM and ratio methods performed the best, indicating that for dry

sites, where fewer events have been recorded, both the GAM and ratio estimators are promising.

There are clear advantages from modelling multiple years worth of data. The first and most important

advantage is that it builds in history, a time series of flow and concentration characteristics that can be

used to predict across the entire time frame. This approach also has the capacity to incorporate trends

through time (whether seasonal or long term) and it aids in the understanding of concentration and flow

relationships and how they might differ for different types of concentrations we are interested in. We could

of course fit models to each water year separately and in some circumstances we are limited to this because

of the nature of the sampling. In doing so we may find that a much simpler model is supported because the

seasonal and long term patterns of flow and concentration are not apparent in a shorter time series.

We conclude with the following observations regarding the methodology presented in this report.

1. Depending on the nature of the sampling and assumptions about measurement and spatial error, the

coefficient of variation (CV)1 can be as low as 5% (heavily sampled) and as high as 80% (community

based datasets).

2. We found that loads estimates were similar to standard ratio based estimators at sites where sam-

pling bias was minimal (e.g. Inkerman Bridge, Burdekin) but much smaller when the bias was large

(e.g. Tully). The regression based methodology offers a novel way of capturing all forms of bias and

uncertainty that we believe leads to a more robust estimate of the load compared to other estimators.
1The coefficient of variation is a normalised measure of precision and is given by the ratio of the standard deviation to the mean

(load estimate). Low CVs have a small standard deviation relative to the mean and are seen to be more precise.
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The average based estimators consistently estimated a higher load compared to the modelled based

estimators except when samples were taken at regularly based intervals and the only significant term

fitted in the model was the constant term (e.g. Mistake Creek).

3. The generalised regression based approach is general enough to incorporate a range of different

models from models involving just flow to more complicated models that incorporate other covariates

(e.g. rising/falling limb, discounted cumulative flow) and possibly interaction terms. Different covari-

ates may be important in different catchments because the underlying hydrological and catchment

processes vary and their contribution in a model can be graphically explored to determine the reason

why a large load has been estimated in any particular water year. This represents a novel feature of

the regression based approach not offered by standard load based estimators.

4. Serial correlation may also be an issue and needs to be accounted for where appropriate as high

correlations can lead to larger standard errors.

5. Sites with small numbers of concentration samples can also be modelled, although the number and

type of covariates incorporated into the model are limited. At worst, the model defaults to the popular

average type estimator.

6. Stochastic uncertainty is adequately dealt with by predicting concentration at regular flow intervals

and estimating the load accordingly. This eliminates unwanted bias effectively.

7. The regression approach allows us to borrow strength across years to characterise relationships better

and improve the estimation of loads, particularly in years where sampling is poor.

8. The framework presented here is general enough to be applied to all GBR catchments.

We have targeted a number of areas of future work which will help to operationalise the methodology

presented here. These are outlined below.

• [TASK1] Further validation of the methodology through simulation is required. We have performed a

preliminary investigation of the methodology through a simulation exercise in this report but some fur-

ther fine tuning of parameters are required (e.g. choice of discounting, percentile for defining a ”flush”,

evaluating redundancy and whether all process representations are required, additional covariates).

Selection of suitable datasets for simulation also requires discussion with key stakeholders (QDERM

and JCU) to ensure they are representative of catchments in the GBR and whether other Australian

longterm datasets are available may be more suitable, or whether ”true load” measurements are

available with which to validate the sample-based modelling methods (eg continuous turbidity for sed-

iment).

Kuhnert, P. et al.
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• [TASK2] Investigate how new data consisting of new sites over other monitoring years can be incor-

porated into the analysis and how well existing models can predict concentration at these sites.

• [TASK3] Investigate computational issues for the standard error calculation. Currently for large

datasets, the standard error calculation involves inverting a large matrix. Approaches that speed

up the calculation of the standard error are of interest.

• [TASK4] Expand the simulation approach to investigate and inform current sampling regimes with the

aim of having direct input into future monitoring schemes in the GBR.

• [TASK5] Operationalise methods through workshops and interactions with key stakeholders (QDERM

and JCU) using case studies in the GBR (e.g. Burdekin & Tully).

• [TASK6] Focus on the interpretation of the model outputs and the reporting of loads.

• [TASK7] Publishing results in a number of applied and theoretical publications to provide greater

confidence in the methods via peer review. Currently we have one publication in the Modelling and

Simulation (MODSIM) conference and a second paper in the pipeline that outlines the methodology

intended for submission into Water Resources Research.

Statistical methods for estimating pollutant loads
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1 INTRODUCTION

1 INTRODUCTION

Quantifying the amount of sediment, nutrients and pesticides (via a load) entering into the Great Barrier

Reef (GBR) is a primary focus for water quality improvement plans that aim to halt or reverse the decline in

reef health over the next 5 years (SOQ, 2003). Although substantial work has been undertaken to define a

load under varying conditions and assumptions (see Kuhnert et al. (2008) for a comprehensive overview of

loads methodologies and related papers on the topic), the methods do not adequately address all aspects

of uncertainty which can be useful to inform future monitoring activities and reporting on the status of trends

in loads (Figure 1).

Figure 1: Overview of Project 3.7.7: Analysis and synthesis of information for reporting credible estimates

of loads for compliance against targets and tracking trends in loads and its relevant components.

There are numerous methods for estimating pollutant loads as described by Kuhnert et al. (2008) and

references therein, Degens & Donohue (2002); Fox (2005) and Letcher et al. (2002). The approaches

described in these publications range from the class of simple average based estimators, ratio estimators,

infilling or interpolation approaches and the rating curve approaches. The approach we focus in this report

is the regression or rating curve method, which seeks to infill the missing concentration data according

to a regression model. Once the missing concentrations are predicted the load is calculated as shown in

Equation 1 where ĉi represents the predicted concentration at the i-th discharge point, qi represents the

discharge, n represents the number of sampling points and K is a constant that depends on the frequency
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1 INTRODUCTION

of measurements and units that the load is reported in.

L̂1 = K

n∑
i=1

ĉiqi (1)

Regression approaches are frequently used to define a so-called pollutant rating curve, which represents

a relationship between pollutant concentration and discharge. The relationship is often defined on the log

scale as

log ci = β0 + β1 log qi + εi (2)

although this does not have to be the case. Here, β0 and β1 are the regression coefficients, ci and qi

represent the concentration and discharge, respectively, and εi represents the error due to measurement

and other sources e.g. spatial error. Linear regression is often the first choice for modelling log-transformed

responses in environmental applications because of its simplicity and ease of implementation (Thomas &

Lewis, 1995). However, the accuracy of the approach relies heavily on the strength and consistency of the

linear relationship. The effectiveness of this method is also known to depend on the sampling regime, both

the frequency of sample collection and the adequacy of the samples to reflect a broad range of conditions.

A generalized approach proposed by Cohn et al. (1992) adopts a 7 parameter model that includes seasonal

and temporal terms, along side a quadratic adjustment for discharge. This model takes the form

log ci = β0 + β1 log(qi/q̄) + β2 log(qi/q̄)2 + β3(ti − t̄) + β4(ti − t̄)2

+ β5 sin(2πti) + β6 cos(2πti) + εi

(3)

where ci is the concentration and qi the discharge at time ti, q̄ and t̄ are centering variables and the sine

and cosine terms capture seasonal effects. Despite working reasonably well in practice it does not attempt

to capture any underlying system processes that may be driving river systems nor does it incorporate any

temporal dependencies which can have an impact on the prediction standard error if they are large and

significant. We believe these to be key components that are often overlooked in the modelling process and

can contribute heavily to the uncertainty surrounding loads.

In this report, we are primarily interested in quantifying the uncertainty in loads, where uncertainty is com-

prised into three components: measurement error, stochastic uncertainty and knowledge uncertainty (See

Figure 1 for an overview of the project and areas of focus). Many approaches in the literature do not in-

corporate uncertainty. Those that do, focus on some aspects of uncertainty but not all. For example, there

are many simulation based approaches that tackle uncertainty by examining the variability amongst load

methodologies (Guo et al., 2002; Etchells et al., 2005; Fox, 2005; Tan et al., 2005), while others develop an

approximation for various loads estimation approaches (Baun, 1982; Fox, 2004; 2005). Tarras-Wahlberg &
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lane (2003) use Monte Carlo simulation to generate alternative log concentration values for their regression

model and thus enable a family of curves to be generated, while Rustomji & Wilkinson (2008) use boot-

strap resampling to place confidence intervals around estimates of load, based on a non-linear regression

approach.

The approach we present in this report attempts to address the three primary aspects of uncertainty re-

lated to the calculation of riverine loads. This is achieved using a regression based estimator to predict

concentration given flow, temporal terms and attributes of flow that mimic hydrological phenomena related

to the riverine system under investigation. The prediction is performed at regular time intervals to account

for sampling bias, and correlation is introduced into the modelling process to account for serial dependence

between sampling intervals. The load is calculated by computing the sum of the products of the flow and

concentration predicted at the regular time intervals and the corresponding error is estimated, where the

error incorporates two sources: measurement and spatial error. The latter corresponds to the location of

samples taken in the river.

We begin with a summary and overview of the three components of uncertainty that lead to the formation

of a credible loads estimate and describe how we intend to address each of these in the context of loads in

Section 2. Section 3 proposes a new loads methodology which represents an extension of the regression

approach by Cohn et al. (1992). Sections 4 and 5 applies the methodology to two case studies, the Burdekin

and Tully catchments respectively and compares the results to 4 standard load estimation techniques that

are widely implemented in the hydrology literature:

• Average based estimators

– Average2: L̂A = Kc̄q̄

– Extrapolation3: L̂E = K
∑n

i=1 cq/n

• Ratio based estimators

– Ratio4: L̂R = L̂EQ̄/q̄

– Beale: L̂B = L̂R ×BC,BC = bias correction5

Section 6 investigates a validation approach for testing the effectiveness of the methodology using sim-

ulation applied to a comprehensive dataset from the United States Geological Survey (USGS) database.
2Referred to as the flow × concentration estimator in the Loads Tool. Available from: http://www.wqonline.info/products/tools.html
3Referred to as the average estimator in the Loads Tool.
4Referred to as the flow weighted concentration estimator in the Loads Tool.
5See Kuhnert et al. (2008) for details regarding BC.
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2 IMPORTANCE OF A CREDIBLE LOADS CALCULATION

Finally in Sections 7 and 8 we provide some discussion around the methodology, its application to GBR

catchments in general, possible implications for future sampling and a summary of future work that fo-

cuses on operationalising the methodology, informing monitoring programs and reporting. These represent

supplementary stages in Figure 1.

2 IMPORTANCE OF A CREDIBLE LOADS CALCULATION

There are numerous loads estimation techniques available. Each varies according to how they characterise

the relationship between flow and concentration over a particular sampling frame. Although often over-

looked, uncertainty plays a key role in evaluating a load and providing a credible loads estimate. Other than

providing some indication of the precision around the load estimate, uncertainty is important for being able

to track trends in loads and determining whether an observed trend is real or not. If the uncertainty around

an estimated load is large to begin with, and remains large over the course of monitoring, then it will be

extremely difficult to detect a decline. Improving the error around these estimates may be more of a focus

in these instances and this will usually result in placing more effort towards sampling.

Uncertainty has a number of different meanings and it can be confused with what is sometimes referred to

as ”bias”. To avoid confusion here, we provide a formal definition for the two terms. Bias is what we would

refer to as a difference between what is measured and the truth. Take the example shown in Figure 2,

where the estimate of the truth is represented by a Normal distribution, which is centred on 2 (the blue

dotted line) with some error. The truth is represented by the red solid line and is well outside our estimated

range, resulting in a bias that reflects the difference between the truth and that which is estimated. Uncer-

tainty is a general term that people tend to use interchangeably with bias to represent different sources of

error. Experimental or measurement error is the most common form that is addressed by this term but often

stochastic uncertainty and knowledge uncertainty are described under this general heading as well. Both

stochastic uncertainty and knowledge uncertainty is what we would refer to as bias. Knowledge uncertainty

tends to correspond to a lack of system understanding that comes about from not being able to capture

system processes in a model while stochastic uncertainty can lead to a bias from the sampling regime. The

key difference between bias and uncertainty is that even though you can have the most precise estimate

from a model which you believe captures the system processes, you still might have a large bias. Incorpo-

rating these biases into estimates of load is therefore an important part of a credible loads calculation and

should not be overlooked.

There are several issues relating to incorporating uncertainty into loads. We highlight these issues in
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2 IMPORTANCE OF A CREDIBLE LOADS CALCULATION

Figure 2: Demonstrating the difference between bias (difference between mean - dotted blue line) and the

true value (solid red line).

Table 1. The first and probably most prominent is the issue around sampling. Flow and concentration are

collected at different temporal frequencies. Most often, flow is measured near continuously (e.g. once every

hour), while concentration is measured at less frequent time intervals, and often only during an event. Com-

munity based sampling typically results in very few concentration measurements and in some instances,

flow is only recorded when concentration is measured or not at all. A second issue involves the relationship

between discharge and concentration, which is often reported on the log-scale and assumed to be linear.

In many instances, a linear relationship is not appropriate and quite often, a model incorporating just flow

has poor predictive power. Furthermore, appropriate back transformations need to be implemented when

using the predicted concentration to calculate a load and care must be taken when using such a relation-

ship for prediction as extrapolation beyond the range of the data may cause spurious results. A third issue

relates to the difficulty in capturing hydrological phenomena such as the concept of a first flush, depletion or

rising/falling limb, which are present in some riverine systems. Although recognised as having an impact on

load calculations, they are often ignored because of the difficulty in incorporating these into a model, or the

limited data with which to calibrate empirical models to represent these processes. Finally, a fourth issue is

accounting for spatial and temporal errors in the collection of discharge and concentration measurements.

Often these are known subjectively, but never incorporated formally into a model. We address each of these

issues in the following sections where we describe the three main sources of uncertainty inherent in loads
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estimation and mechanisms for incorporating these in the modeling of riverine systems.

Table 1: Primary issues related to loads estimation.

No. Issue Impact Type of Uncertainty

1 Flow and concentration collected at different Bias Stochastic

temporal frequencies e.g. event based, community

2 Adequately forming a relationship between poor prediction, Knowledge

flow and concentration bias, extrapolation

bias

3 Difficulty in capturing hydrological poor prediction Knowledge

phenomena

4 Accurately measuring flow and bias Measurement

concentration

2.1 Measurement Uncertainty

Measurement uncertainty or measurement error as it is more commonly termed, represents the uncertainty

in the measured flow and concentration observed at a particular site or at different spatial locations within

a site. The latter corresponds to sampling conducted at different spatial locations along a river, e.g. left or

right bank or towards the centre of the river for concentration measurements and downstream, upstream

for discharge. The uncertainty will vary according to the data collection method used. For example, routine

discharge measurements are collected using 15 minute intervals of flow depth, which is then converted

to a discharge through empirical relationships. The uncertainty in discharge can vary with stage, with

the common situation indicating smaller errors for flow contained within the river banks and larger errors

identified above bankfull stage due to the greater difficulty in estimating flow velocity across floodplains,

the relatively infrequent nature of such events, and practical difficulties in gauging under such conditions.

For events, the coefficient of variation (CV) can be as high as 20%. However, in most cases, the CV is

estimated at around 10% (Olsen et al., 2004). Measured concentration can be more variable however and

depends on the type of water quality parameter being measured, how the parameter has been measured

(cross-channel or spatial variation), its storage, preservation and laboratory analysis. Work by Harmel et al.

(2006) indicates that a CV of 50% is achievable for most parameters but this can be as low as 5% and as

high as 80%.

Although discussing the different sources of uncertainty at a recent workshop (Bainbridge, 2006), currently
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no formal quantification of measurement (or spatial) error for flow and concentration has been undertaken

for riverine systems in the GBR. It is believed that both forms of error can be as low as 5% and as high as

20% or 30% in some rivers (Jon Brodie, pers. comm.) and that these range of errors should be considered

in the calculation of loads for the GBR.

2.2 Stochastic Uncertainty

Stochastic uncertainty arises from the fact that not all flow and concentration data are collected. Flow tends

to be measured at regularly spaced intervals but concentration can be measured much less frequently, with

a natural bias towards events because events are generally the focus in these types of calculations. We

therefore will have uncertainty in loads for the periods we do not have data.

There is a substantial body of literature showing that the sampling regime can have strong impacts on

the accuracy of pollutant loads (Walling & Webb, 1981; Johnes, 2007). Many have approached the prob-

lem through simulation studies and investigating the optimal sampling regime for a range of estimators.

However, the problem with this approach is that the sampling regime recommended may vary due to the

hydrological characteristics at each site. Furthermore, the way in which samples are collected may not re-

flect what should be done theoretically to achieve an estimate of the load that is both accurate and precise.

To illustrate the nature of the bias this type of uncertainty presents, consider the following estimates of bias

for sediment and flow recorded at the Euramo site along the Tully River. Flow data is gauged and recorded

on average hourly, while total suspended sediment or TSS is recorded less frequently (Figure 3). Table 2

summarises the flow data recorded across eight water years. In this table, n represents the number of

concentration records, q̄ represents the average flow measured at concentration samples, Q̄I represents

the average predicted flow at regular time intervals using a time series model and Q̄ represents the average

flow recorded at the gauging station. We computed the bias of the interpolated flow relative to the average

gauged flow (Bq) and the bias of the flow recorded only when concentration has been measured, relative

to the average gauged flow (Bc). This table shows that the bias from using an interpolated flow record

across all 8 water years has some impact and can be up to twice as high as the average flow recorded.

The bias incurred from using flow that is only recorded when concentration is measured however, is much

more substantial. For example, q̄ is 4 times higher than the average gauged flow on some occasions. Not

accounting for this bias can lead to serious overestimation or underestimation of the load and highlights the

importance of accounting for bias in the loads estimation procedure. The effect of stochastic uncertainty on

load estimation will also depend on our knowledge about the flow and concentration processes.
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Figure 3: Tully river at Euramo site showing (a) the gauged flow in m3/s and (b) measured total suspended

sediment (TSS) in mg/L from 2000-2008.

Table 2: Illustration of bias in the sampling regime for the Euramo site located along the Tully river. (Data

courtesy of Marianna Joo, Department of Environment and Resource Management, QLD.)

Year n q̄ Q̄I Q̄ Bc Bq

00/01 6 156.6 202.8 115.8 1.35 1.75

01/02 3 30.2 71.4 44.0 0.69 1.62

02/03 8 51.1 81.0 38.8 1.32 2.09

03/04 28 372.1 210.0 106.1 3.51 1.98

04/05 4 39.4 101.1 60.7 0.65 1.67

05/06 20 260.1 161.9 112.4 2.31 1.44

06/07 12 532.9 185.5 132.9 4.01 1.40

07/08 66 343.9 112.6 112.4 3.06 1.48

Mean 18.4 164.5 149.8 93.1 1.50 1.70
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2.3 Knowledge Uncertainty

Knowledge uncertainty arises from our lack of understanding of the underlying hydrological processes and

the ensuing choice of load estimation algorithm. It may also be considered a form of bias. In an ideal

situation, when there is direct and continuous observation there is no knowledge uncertainty because the

load may be measured by the product of the observed concentration and discharge summed across all

instances of flow. In circumstances where the sampling and observation is considerably more sparse, there

is a need to make assumptions about the underlying processes (e.g. load is proportional to the discharge as

assumed for ratio estimators) and incorporate these assumptions along side the observed data to estimate

the pollutant load. Knowledge uncertainty is therefore reducible. As we understand more about the nature

of the processes and collect data over a range of different years and event types we will build a more

complete picture that reduces that source of uncertainty.

In the absence of much knowledge many load estimation methods may be viewed as appropriate, and may

give load estimates that can vary widely. For example, Phillips et al. (1999) examined the variation in load

estimates for the Rivers Ouse and Swale in England in response to both sampling frequency and the load

estimation algorithm. Twenty two load estimation algorithms were considered and a number of replicate

analyses or simulations were conducted. While most algorithms produced a median load reasonably close

to the reference value, a small number of algorithms deviated significantly from the reference value. As an-

other example, Guo et al. (2002), Etchells et al. (2005) and Tan et al. (2005) tackle knowledge uncertainty

through the examination of the variability amongst load methodologies. Incorporating this knowledge un-

certainty is difficult though because not all choices of load method are equally likely or supported, and many

are highly related. In reality, we usually have existing knowledge, albeit incomplete, that implies that some

methods are more appropriate than others. We believe that choosing a single methodology and tackling

knowledge uncertainty within this methodology may be able to provide a more comprehensive and accurate

estimate of the uncertainty around the load and avoid some of these issues

3 LOADS METHODOLOGY

3.1 Regression based methodology

The loads methodology that we propose takes on a 4 step process as outlined in Algorithm 1. The first step

involves predicting flow at regular time intervals using a time series model such that the model captures

all of the peak flows. The predicted flow, q̂ is then matched to concentration sampling times and used
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only when flow was not collected at that specific time interval. The second step involves the prediction of

concentration using a predictive model that incorporates all important covariates in an attempt to capture

the underlying hydrological processes concerned with the flow and transportation of sediment and nutrient

loads. These predictions are made at regular time intervals and matched with q̂ at the first stage ensuring

that flow is capped and extrapolation does not occur beyond the range of the data. We refer to this part

of the estimation process as the generalised rating curve approach. We then obtain an estimate of the

load, L̂ in the third step using the predicted concentration, ĉ and predicted flow q̂ and incorporating a unit-

conversion constant, K for time interval, δ. Standard errors are then computed during the fourth step of this

process which incorporate both measurement error and errors due to the spatial location of sampling sites.

We believe that this algorithm provides an approach that is capable of adjusting for bias as discussed in

Section 2 and can accommodate:

• measurement error through the direct incorporation of error in the estimation phase,

• stochastic uncertainty through the prediction of q and c at regular time intervals, and

• knowledge uncertainty through the inclusion of additional covariates in step 3.

Algorithm 1 Steps for Estimating a Load

1. Estimation steps for flow, q̂

• Output flow rates at regular time intervals (e.g. hourly, 10 minutes) using a time series model that

captures all the peak flows.

• Output the predicted flow rates at the concentration sampling times using the time series model if

the corresponding flow rates are not collected

2. Estimation steps for concentration, ĉ

• Establish a predictive model for the concentration data which includes all important covariates

• Output the predicted concentrations at the regular time intervals ensuring that extrapolation does

not occur beyond the range of the data.

3. Obtain an estimate of the load, L̂ = K
∑M

m=1 ĉmq̂mδ

4. Obtain standard errors, var(L̂).

We explore some of the important system processes in Section 3.2 and how they can be incorporated into

a regression based model in Section 3.3.
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3.2 Important system processes for GBR catchments

There are several hydrological phenomena which can be considered in estimating the sediment and nutrient

loads of riverine systems. Table 3 summarises these main hydrological processes and how they might be

incorporated in a regression model. We describe each of these processes in the following sections in

relation to the regression based approach.

Table 3: A summary of the primary hydrological processes affecting the calculation of loads

Phenomena Process Description Representation

1 First Flush First significant channelised flow Percentile of flow

is accompanied by high

concentrations

2 Rising/Falling Limb Capturing the rise or fall of Categorical variable:

an event measurements located

on the rise or fall.

3 Exhaustion Limited supply of sediments and Discounted flow

nutrients due to previous events.

4 Hysteresis Complex interactions between flow Non-linear terms for flow

and concentration with strong

historical effects

5 Overbank Flow Flow that goes overbank in Correction factor

flood events

Processes 1 and 3 relate to the antecedent conditions within the catchment prior to a flow event, which can

influence the concentration occurring during that event. Processes 2, 4 and 5 relate to systematic temporal

trends or changes in concentration observed within individual events. On the other hand, traditional regres-

sion models of concentration consider only the discharge at the present moment in time. Present discharge

is a good representation for transport capacity, but the other hydrological phenomena listed here relate also

to other constraints on pollutant supply.

3.2.1 Phenomena 1: First Flush

What is it?

The ”first flush” (Furnas, 2003) is a phenomenon whereby the first significant channelised flow of the wet
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season is accompanied by relatively high sediment and nutrient concentrations. Precipitation in GBR catch-

ments occurs predominantly within a well-defined, summer wet season (November to April). The run-off

and interflow associated with a wet season’s initial, flow-inducing precipitation event tends to pick up uncon-

solidated, fine sedimentary material and nutrients that have accumulated on or just below the land surface

of the catchment. These materials accumulate due to natural weathering, disturbance, anthropogenic ac-

tivity (e.g. land cultivation) and biomass decay during the relatively long, intervening dry period between

wet seasons (Wallace et al., 2008) and are readily entrained by the event runoff.

How do we incorporate it?

The identification of a first flush in a water year is fairly subjective and can vary from system to system. For

example, a first flush in a river system residing in a dry catchment like the Burdekin can be quite different to

a first flush in a riverine system residing in a wet catchment such as the Tully.

To avoid having to subjectively choose a flow cut-off that represents a first flush, we select a percentile,

say the 90th, to represent the flush, Qp, in a particular water year for a river of interest. The choice of

percentile, p can also be considered subjective and may change depending on the river system investigated.

Irrespective of this it is perceived to represent a ”high” flow for that period, which is used in the creation of

other hydrological covariates. We illustrate this concept in Figure 4, which shows the variable that is created

from flow records at the Inkerman Bridge site in the Burdekin River. For each yearly period (in this case,

a financial year), flush is defined as the 90th percentile (Q0.9) for that period. In Figure 4 we see that the

1996/1997 financial year provided the largest flush, which was revisited again in the 1999/2000 financial

year.

3.2.2 Phenomena 2: Rising/Falling Limb Sampling Biases

What is it?

The phenomenon of exhaustion explored in Section 3.2.3 leads to a consideration of how samples are

taken. Water samples are often retrieved manually several hours, or even days, after the first indication that

an event is in progress. This delay typically arises due to travelling time and/or difficulties in accessing a

sampling site due to inclement weather conditions. The consequences of such a delay can be that sampling

occurs after the peak in sediment/nutrient concentration with the resulting concentration values essentially

reflecting exhaustion levels. Without high-resolution sampling across both limbs of the hydrograph it is

impossible to know at what point concentrations approach exhaustion levels. However, examining charts of

discharge versus TSS, N, and P concentration across several events in the Tully and Murray catchments
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Figure 4: A snapshot from Inkerman Bridge in the Burdekin showing the concept of a ”flush” in m3/L which

is determined using the 90th percentile for each financial year.

during the 2007/08 wet season (Wallace et al., 2008) it appears that exhaustion, in most cases, is becoming

evident by the time the hydrograph peaks. Based on this limited data we believe that it will be useful

to identify whether a sample was collected on the rising (prior to exhaustion) or falling limb (indicating

exhaustion) of a hydrograph. The other important aspect of this is that different water quality variates may

respond differently to the stages of hydrograph. Sediments and nutrients attached to particulates may be

mobilised quickly, while other forms may need to dissolve and therefore take longer.

How do we incorporate it?

As concentration is thought to vary during events it makes sense to capture such variabilities through a term

that identifies the event and in particular, whether the event and recorded concentration is captured on the

rising or falling stages of the hydrograph. Capturing the rise or fall is particularly important in some riverine

systems where there is difficulty sampling concentration during an event therefore results in samples being

collected on the fall only. It may also be important for different water quality parameters as some are known

to respond quickly to flow (e.g. sediment) and closely follow the hydrograph, while others (e.g dissolved

nutrients) may exhibit some lag and possibly show higher concentrations on the falling limb.

Figure 5 shows an example of how we capture the rising and falling stages of an event using a step function

that is 1 when flow is on the rise, -1 when flow is decreasing and therefore on the fall and 0 when it is neither

for a particular event (or flush as outlined in Section 3.2.1). The exact point at which the event occurs is

determined by the flush, Qp, identified for the water year. So if Q > Qp then
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Li =


1 (Qi −Qi−1) > 0

−1 (Qi −Qi−1) < 0

0 otherwise

Depending on our definition of an event, we may observe a different pattern for the rising/falling limb.

Therefore defining what a flush represents is an important component for the definition of this variable in a

model.

Figure 5: A snapshot from Inkerman Bridge in the Burdekin showing (a) an event for a particular time period

and (b) the rising/falling limb is indicated by a step function.

3.2.3 Phenomena 3: Exhaustion

What is it?

The first flush phenomenon described in Section 3.2.1 may occur for fairly small events but is actually part of

a broader depletion process that operates and manifests itself as a progressive decline (linear or nonlinear)

in concentrations for a given discharge over the season. Events that have occurred after a lengthy dry

period will tend to result in higher transportation of sediment and nutrients through a system. This is most

evident after the dry season where the conditions lead to the first flush phenomena. Subsequent events

throughout the season will continue to move sediment, nutrients and pesticides, though often larger events

are required to yield similar concentrations as the season progresses. This occurs because the systems
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will reach a point of exhaustion, where despite large events, the amount of load generated is reduced by

limitations in supply. Figure 6 illustrates this process for the Myuna site in the Bowen river. In this figure, we

see that the maximum turbidity (and TSS concentration) in each event reduces even though the maximum

depth (and discharge) increases.

Figure 6: Depth-turbidity relationship in the Bowen river at Myuna for four events in the 2006/07 wet season.

Between events in a given season or year, concentration can generally decline due to depletion of available

sediment. This depletion may be caused by transport of material weathered during prior dry seasons and

an increase in vegetation cover through the season. Conceptually, the concentration discharge relationship

may also be affected by rainfall in prior years, through variations in vegetation cover; thus depletion may

occur at two temporal scales. Sediment entrained in rainfall run-off will be derived from two primary pools:

A) the pool of readily transportable, unconsolidated material that has accumulated on the ground surface of

the catchment (via direct weathering and indirectly via aeolian transport) in the period since the last run-off

generating rainfall event, and B) that derived from direct physical erosion of the ground surface by raindrop

impact, overland flow etc. During a precipitation event of sufficient intensity to generate run-off, sediment

will be entrained from both pools. However, once pool A has been depleted then pool B becomes the

predominant supplier of sediment to the runoff. Thus, sediment concentrations are generally higher earlier

in a flow event when material is available for transport from both pools and decrease as pool A becomes

depleted. This phenomenon is referred to as ”exhaustion”.

How do we incorporate it?

We attempt to capture the exhaustion phenomena through a discounted flow term, Di in the regression
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model that involves discounting the flow by a factor, d that down weights the contribution of an event based

on the time between events and the size of the event, a form of exponential smoothing. In other words we

discount yesterday and more the day before. We define the discounted flow, Di as follows

Di =
(1− d)
1− di

i∑
m=1

di−mQ̂m, (i = 1, . . . , T.) (4)

where d represents the discount factor ranging between 0 and 1, Q̂m represents the predicted flow occurring

at the (m)-th interval and T represents the length of the time period (across all years). Note that a very

small discount (less than 0.1/day, say) is equivalent to using (a smoothed representation of) the current

flow while a large discount (more than 0.99/day, say) is essentially equivalent to the cumulative mean flow.

Here d may be chosen as 0.95 per day (and hence roughly 0.5 per fortnight) suggesting that about half of

the flow occurring two weeks ago is contributing to sediment and nutrient runoff now. The optimal d will

depend on the underlying recovery and exhaustion rates of the sediment. In practical terms the discounting

will have the effect of reducing the predicted concentrations when there have been recent events in the

past. Figure 7 shows the effect of incorporating four different discount factors for flow data collected at the

Inkerman Bridge site in the Burdekin over a two month period. We see that as the discount factor increases

from 10% to 99%, the flow contribution is shifted by some lag to the right suggesting that the flow occurring

in the past is now contributing to sediment runoff in the present. The shift is related strongly to the level of

discounting and hence the lag.

3.2.4 Phenomena 4: Hysteresis

What is it?

Hysteresis is the reason why we need to account for hydrological terms such as the first flush, exhaustion,

dilution and changes in concentration on the rising or falling limb in a model. There are physical processes

which result in non-unique relationships between discharge and concentration at several temporal scales.

Within events, there can be hysteresis in the concentration-discharge relationship, such that this relationship

varies to form a clockwise or anti-clockwise loop. Frequently, concentration is higher on the rising limb of

the hydrograph, due to depletion of sediment availability during the event (Nistor & Church, 2005) and

possibly higher rainfall intensity and sediment transport capacity occurring on the rising limb.Water quality

concentration data is also observed sequentially in time and is often serially correlated. This infers that past

events have some relationship or dependency with present events. Traditional rating curve and regression

approaches assume independence. This can ignore the fact that the best predictor of an unobserved

concentration may be the observed concentration at a nearby time point. In simplistic terms, the impact
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(a) (b)

(c) (d)

Figure 7: Implications of the discount factor in the calculation of the discounted flow term when (a) d = 0.1,

(b) d = 0.5, (c) d = 0.95 and (d) d = 0.99.
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of the serial dependence in a model is in the standard error calculation and not in the prediction. As the

correlation, ρ increases, we typically see larger standard errors in our estimates. Therefore taking into

account dependence in these models is important.

How do we incorporate it?

Capturing complex relationships between concentration and flow and in particular hysteresis effects can be

achieved by considering non-linear terms for flow (e.g. quadratic or splines) in combination with temporal

and seasonal terms (sines and cosine terms) that capture historical processes and seasonal effects re-

spectively. Terms capturing changes in concentration on the rise or fall, exhaustion and dilution which were

identified previously can also be considered as part of this process and the importance of serial depen-

dence can also be investigated. With the latter, residual serial dependence is often modelled by assuming

that it forms an autoregressive process of order p (denoted AR(p)). This means that the residual, εi at time

ti depends on the past only through the previous p residuals, εi−1, . . . , εi−p. In these regression models we

assume an AR(1) process, in which case εi = ρεi−1 + νi, where νi are assumed to be independent Normal

random variables and ρ is the lag 1 correlation.

3.2.5 Phenomena 5: Overbank Flow

What is it?

”Breakout flow” or alternatively overbank flow is a hydrological concept that refers to the amount of water

leaving a river and going overbank. Flow gauging stations are generally considered to provide a reasonable

indication of the flux of water through a particular river cross-section with time. However, if a portion of the

boundary between two catchments lies upon a low relief coastal floodplain, then during large, overbank

flow-events, where the floodplain is almost entirely inundated, flood water may flow overland and into the

adjoining catchment (”breakout flow”), or ocean (e.g. Tully and Murray catchments (Wallace et al., 2008)). If

such a breakout of flow occurs upstream of a gauging station, then the gauge will under represent discharge

from the catchment.

How do we incorporate it?

In practice this may be difficult to model since the error may not be well observed. Investigations into how to

estimate the amount of sediment resulting from overbank discharge is currently underway (Wallace et al.,

2008; Kuhnert & Dovers, 2009). This work is attempting to provide a number of correction factors for clusters

of rivers exhibiting similar flow and water quality characteristics, which can be used within this modelling

18



3.3 The generalised rating curve approach 3 LOADS METHODOLOGY

framework to correct for overbank flow. We presently ignore overbank flow in this report but acknowledge

that for sites within the Tully, loads may be underestimated.

3.3 The generalised rating curve approach

The generalised rating curve approach attempts to capture the underlying hydrological processes of a load

to improve prediction accuracy. The approach we present here is an extension of Cohn et al. (1992) that

• incorporates other factors other than discharge to capture the underlying hydrological processes and

reduce knowledge uncertainty, and

• introduces more flexible non-linear functional forms (e.g. quadratics and splines) for the model pa-

rameters to improve the accuracy of the prediction.

Based on the covariates discussed in Sections 3.2.1-3.2.5 we consider the following model

log(ci) = β0 +
7∑

k=1

βkxki + εi, (5)

where x1i is log(Q), x2i is log(Q)2, x3i is time in days (t), x4i is sin(2πt/365.25), x5i is cos(2πt/365.25), x6i

is the limb (1=rising, -1=falling, 0=no flush), and x7i is the discounted flow, Dj , where the discount factor

is chosen to be 0.95 per day. Interaction terms may be investigated to allow the effect of the limb to alter

according to flow and the discount factor. However, we do not explore them here. In matrix notation, we will

write log(C) = X0β+ ε, where β is the parameter vector and X0 is the n×8 design matrix. The residuals, εi

are assumed to follow an AR(1) process where appropriate. It is important to have the range of xi covered

in the data or spurious predictions may occur. To this end, it may be necessary to impose an upper limit for

the concentration to ensure extrapolation does not occur beyond the range of c.

This method represents a general framework for modelling concentration that considers other explanatory

variables and attributes of the hydrograph to improve the prediction of concentration. We acknowledge

that there may be times when concentration is at best weakly related to discharge. Furthermore, other

covariates may be important to include into the model in some circumstances. For example, it may be

relevant to consider something that relates rainfall intensity as captured by the rate of the rise in stage

height. The model represented by Equation 5 can therefore be as simple or complex as required. In the

worst-case scenario, where there is no predictive power, the regression model can be seen to default back

to predicting an average concentration and the load estimated according to what is one form for the popular

average estimator.
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3.4 Estimating pollutant loads from the regression model

Once an appropriate model has been fitted we can form predicted concentrations using the expression (in

matrix notation), (ĉm)(1≤m≤M) = exp{X1(X ′0X0)−1X0z} where X0 represents the design matrix and X1

represents the n × 8 design matrix for predicting the n concentrations and z = {log(ci)}i=1,...,n. The load

estimator is then given by Equation 6 where s2 and s2m are the estimates of variance of ε and ˆlog(cm).

L̂ = Tδ

M∑
m=1

ĉmq̂m exp{(s2 − s2m)/2} (6)

Note in this expression that we present the bias corrected estimator since E(C) = E{exp(X1β + ε} =

exp(X1β+σ2/2} and E(ĉm) = cm exp(σ2
m/2) where σ2 and σ2

m are the variances of ε and ˆlog(cm) represent-

ing measurement error and spatial error respectively. Both of these quantities may be specified subjectively

but that they will be based on knowledge of the measurement process (e.g. from replicate sampling) etc.

Ferguson (1986) and Koch & Smillie (1986) propose at least three other ways of correcting this estimator.

We will not focus on fine tuning such bias because it is relatively small considering the other types of model

bias and the associated uncertainties considered by this model. Note that exp(s2/2) may be replaced by

the smearing estimate,
∑n

i=1 exp(ε̂i)/n (Duan, 1983) where ε̂i are the residuals from the regression model.

3.5 Estimating Load Uncertainty

We are interested in establishing the predictive variance of L in which a model error ε cannot be eliminated

by increasing sample size. The model error, ε is assumed to have a variance, σ2 and correlation matrix

R(ρ) with autocorrelation parameter ρ which measures temporal correlation. If we denote the vector of the

corrected load estimates at the regular time intervals as Lm, and after some algebra, we have an expression

for the variance of L̂:

var(L̂) = trace{var(β̂)SST }+ α2
1[

∑
m

L2
m{1 + ∂f/∂ log(Qm)}2] + α2

2[
∑
m

Lm{1 + ∂f/∂ log(Qm)}]2 (7)

where f(Q̂) is the regression model on the log scale and ∂f/∂ log(Qm) = β1 for the traditional rating curve

model, S = XT
1 (Lm)l≤m≤M is a matrix of K ×M (K is the number of parameters), SST is a square matrix

of K × K and α1 and α2 are the coefficient of variation (CV) of the independent measurement error and

spatial/temporal random effects in log(Q). Note, both α1 and α2 are defined in this model and are typically

based on published findings or experimental studies investigating errors of this type.
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4 CASE STUDY I: BURDEKIN CATCHMENT

4.1 Catchment characteristics

The Burdekin catchment is the second largest catchment draining to the GBR lagoon and it represents the

largest in terms of mean gauged annual discharge (Furnas, 2003). The Burdekin river itself drains an area

of 130,126 km2. The distribution of land use within the catchment is represented primarily by cattle grazing

(95%) and other uses, including cropping (5%) (Rayment & Neil, 1996; Furnas, 2003). The geology of

the catchment is quite varied containing igneous, sedimentary and metamorphic rock provinces (Fielding &

Alexander, 1996; Furnas, 2003) and a wide variety of soil covers. Precipitation within the catchment occurs

primarily within a well-defined, summer wet season with higher falls near the coast and declining westwards

of the Great Dividing Range (Furnas, 2003; Amos et al., 2004). Area weighted annual rainfall within the

catchment is 727 mm (Furnas, 2003). The recorded annual discharge of the Burdekin River is highly

variable ranging from 247,110 Ml (1930/31, Home Hill) to 54,066,311 Ml (1973/74, Clare), representing the

end of catchment over the 84 years of the record. Development of the catchment by European settlers

began in the mid-1800s with the introduction of sheep and cattle grazing (Lewis et al., 2007) and the

commencement of alluvial mining. It is generally accepted that post settlement activities such as these

would have increased the annual average flux of sediment to the GBR lagoon (e.g. (Belperio, 1979; Moss

et al., 1992; Neil & Yu, 1996; Brodie et al., 2007) and in recent years trace-element analysis of coral cores

has provided evidence in support of that proposition (McCulloch et al., 2003; Lewis et al., 2007).

Several attempts have been made to estimate recent annual-average, and event based, sediment fluxes

from the Burdekin River to the GBR lagoon. Belperio (1979) estimated annual average load to be 3.45×106

tonnes, but Amos et al. (2004) consider this early estimate to be unreliable due to the highly variable

seasonal and intra-annual discharge patterns. Amos et al. (2004) estimated a flux of 3.7 × 106 tonnes of

suspended sediment and 3× 105 tonnes of bedload were transported past a monitoring site in the Burdekin

River during a 29 day discharge event in February and March 2000. Mitchell & Furnas (1997) monitored

suspended sediment transport in the river between 20 December 1995 and 12 February 1996 and obtained

a flux of 2.6− 4.8× 106 tonnes over that period. That the two event-based estimates were of similar size but

the corresponding peak discharges were of different magnitude (3166 m3s−1 vs 11155 m3s−1) is believed

to indicate influence of antecedent weather conditions upon the availability of sediment for transport (Amos

et al., 2004).

We applied the methods described in Section 3 to three different sources of data collected in the Burdekin,

where the monitoring of total suspended sediment (TSS) and oxidised nitrogen (NOx) was of interest. These
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sites constitute

• Inkerman Bridge, representing the end of catchment for the Burdekin. Data collection at this site was

conducted by AIMS, who collected a long term time series of concentration and flow;

• Myuna site at the Bowen River, where data collected automatically represents the sub-catchment

scale; and

• Mistake Creek, representing manual community based samples, where data is typically only collected

during an event. Therefore data of this type is fairly limited and sparsely recorded across the hydro-

graph.

We investigate these three types of datasets to determine if a modelling approach can be used to estimate

concentration and therefore allow credible calculation of a load. In terms of modelling, we examined a

number of GAM models for predicting concentration which incorporate the covariates outlined in Section 3.

The optimal model was determined by assessment of the generalised cross-validation (GCV) score via a

backward elimination procedure which begins with a model that includes all covariates. Once the optimal

model was identified, we refit the model including an AR1 term (where appropriate) to account for serial cor-

relation and re-estimated the parameters of the final model and evaluated the fit using standard diagnostic

tools (e.g. residual plots). Using this model, we predict concentration at regular time intervals and calculate

a total load for each water year reflected in the data. We also provide a standard error and corresponding

95% confidence interval for each estimate that incorporates measurement error (α1) and spatial error (α2).

We explored a range of errors that captured previously published findings as well as some extremes to

allow for comparison between different types of errors. These consisted of:

• Error Structure 1: no measurement or spatial error (α1 = 0, α2 = 0)

• Error Structure 2: mild measurement and spatial error (α1 = 0.1, α2 = 0.05)

• Error Structure 3: moderate measurement and spatial error (α1 = 0.3, α2 = 0.1)

• Error Structure 4: large measurement and spatial error (α1 = 0.5, α2 = 0.2)

We also compare the estimates from our model with some of the standard loads based estimators high-

lighted in the introduction and comment on their applicability to the data at hand.
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4.2 Inkerman Bridge

Data collected at Inkerman Bridge was collected by the Australian Institute of Marine Science (AIMS) be-

tween 1987 and 2000 as part of their riverine monitoring program for the purpose of calculating annual

loads (Mitchell et al., 2006). Flow data was recorded by a Natural Resources and Water (NRW) gauge

located at Clare, which resides approximately 20km upstream from the sampling site where concentrations

of TSS and NOx were recorded. Figure 8 shows a plot of flow and concentration collected over the 14 year

period. The collection of concentration data appears very sporadic throughout the years, particularly for

TSS but becomes more frequent during the later periods.

Figure 8: Plot showing (a) flow (m3/s, (b) TSS (mg/L) and (c) NOx (mg N/L) captured at the Inkerman

Bridge site along the Burdekin River.
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4.2.1 Total Suspended Sediment (TSS)

As highlighted above, we investigated a number of GAM models and selected the strongest fitting model

(lowest GCV score) to use for predicting of TSS at the Inkerman Bridge site. The optimal model for predicting

TSS included linear and quadratic terms for flow (log(Q̂), log(Q̂)2), a term characterising the rising/falling

limb and discounted flow (D) which explained 47.3% of the variation in the data. The model is summarised

in Table 4 and Figure 9 illustrating the predictive relationship between flow and TSS. Figure 9(b) in particular

shows the relationship between the constant (stable) region of the curve produced for D and flow events

corresponding to that region and suggests that frequent large events (increase along x-axis of bottom plot)

may lead to an exhaustion process. Residual plots are displayed in Figure 10 and indicate the model is fit

well to the data.

Table 4: Parameter estimates from the optimal model fit to TSS at the Inkerman Bridge site using 14 years

worth of data. The coefficient (β), standard error (SE(β)) and p-value are shown for each parameter. This

model had a GCV score of 0.26 and explained 47.3% of the variation in the data. The estimated serial

correlation between adjacent days was 0.802. (bl = baseline reference category.)

Parameter β SE(β) p-value

Intercept 11.165 1.77 < 0.001

Flow

log(Q̂) -2.378 0.57 < 0.001

log(Q̂)2 0.220 0.05 < 0.001

Limb (bl=flat)

Fall 0.135 0.08 0.097

Rise 0.217 0.07 0.002

Smooth Discounted Flow Term

s(log(D)) EDF=6.825 < 0.001

Specific results from this modelling include:

• 24.2% of TSS on average can be attributed to the rise of an event, while 14.5% are associated with

the fall.

• Periods of stability in the discounted cumulated flow term may be linked with periods of exhaustion

due to frequent large events as indicated by Figures 9 and 9.

• Increases in flow are indicative of increases in TSS (Figure 9(d)). Although increases are noted with
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Figure 9: Plots showing the predictive contribution of log(D) with respect to TSS for the Inkerman Bridge

site where (a) illustrates an increase in TSS as log(D) increases, (b) shows a stable, constant relationship

and (c) illustrates a decrease in TSS for large values of log(D) and (d) highlights the quadratic relationship

for flow as expressed in Table 4.
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Figure 10: Residual plots examining the fit of the final model for TSS for the Inkerman Bridge site.
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low flow events as well. The results may be confounded with D.

Estimates of the total load of TSS for each water year at the Inkerman Bridge site are summarised in

Tables 21(a)-24(a) in Appendix A. Figure 11 also summarises the results for each error structure across

water years and overlays the Beale Ratio estimator for comparison (red points). Note, the Beale estimator

could only be applied when n > 1. Results from other estimators are presented in Table 5 for comparison.

From these tables and figures, we observe that as the errors increase, the width of the confidence intervals

increase, highlighting an increase in the variability in estimates across years. Of all the water years, the

1990/91 water year exhibits the largest standard error which is reflected in the width of the confidence

interval and most likely due to the number of samples at that site and the size of the flow measured as

can be seen in Figure 8(a). Small loads are predicted for water years encompassing 1991-1996, 1998/99

and 2000/01. Note the ability of this model to estimate a load during water years where no monitoring data

has been collected. Although seen as an advantage, care needs to be taken when interpreting these loads

estimates, particularly when the time period falls outside the range of the modelled data (e.g. 1987-1989

and 2000/01).

In comparison to the standard load estimators we note that both the average and extrapolation estimators

perform the worst, overestimating the load for nearly every water year. Both the ratio and Beale estimators

are more comparable to the modelled estimate as can be seen in Figure 11, where the majority of the time,

the estimate is within the 95% confidence interval calculated for the load at each water year.

Table 5: Estimates of the total TSS load (Mt) for the average, extrapolation, ratio and Beale estimators for

the Inkerman Bridge site.

Water Year n Q̄ Standard Estimators

Average Extrapolation Ratio Beale

1989/1990 3 296.4 36.48 51.16 5.61 5.62

1990/1991 2 1277.8 115.16 115.16 16.67 16.67

1991/1992 1 16.8 0.03 0.03 0.04 NA

1995/1996 19 68.4 4.05 14.46 2.59 2.83

1996/1997 78 275.2 31.08 48.82 7.53 7.58

1997/1998 39 286.8 24.93 50.61 5.49 5.57

1998/1999 70 190.5 4.68 5.09 1.68 1.68

1999/2000 100 438.0 18.93 26.5 5.04 5.05
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(a) (b)

(c) (d)

Figure 11: Summary and comparison of loads estimates for Inkerman bridge for TSS assuming (a) error

structure 1, (b) error structure 2, (c) error structure 3, and (d) error structure 4. The number of concentration

samples collected in each water year (n) is shown along the x-axis.
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4.2.2 Oxidised Nitrogen (NOx)

We investigated a number of GAM models and selected the strongest fitting model (lowest GCV score)

to use for prediction of NOx at the Inkerman Bridge site. The optimal model for predicting NOx included

linear and quadratic terms for flow (log(Q̂), log(Q̂)2), a periodic term capturing seasonal fluctuations and

discounted flow (D) which explained 43.3% of the variation in the data. The model is summarised in Table 6

and Figure 12 which illustrate the predictive relationship between flow and NOx. Residual plots are shown

in Figure 14 which examine the adequacy of the model fit to the data. Residual plots suggest that the model

provides a reasonable fit.

Figure 12 illustrates an increase in NOx as log(D) increases suggesting no period where the accumulation

of NOx slowed down in the system. An slight decrease in NOx is also noted for higher flows (see Fig-

ure 12(a)) suggesting a possible dilution of NOx in the system once flow reaches a certain threshold. The

periodic term in the model is explored further in Figure 13 and shows a decrease in NOx from October

through to January where a large increase in NOx is noted between January and May (wetter periods)

followed by a slight decrease from May through to September.

Table 6: Parameter estimates from the optimal model fit to NOx at the Inkerman Bridge site using 14 years

worth of data. The coefficient (β), standard error (SE(β)) and p-value are shown for each parameter. This

model had a GCV score of 0.92 and explained 43.3% of the variation in the data. The estimated serial

correlation between adjacent days is 0.897.

Parameter β SE(β) p-value

Intercept -2.466 1.23 0.05

Flow

log(Q̂) 0.397 0.42 0.34

log(Q̂)2 -0.058 0.04 0.13

Periodic Term

c1 -0.194 0.12 0.11

s1 0.065 0.20 0.74

c2 -0.059 0.11 0.60

s2 -0.032 0.11 0.77

Smooth Discounted Flow Term

s(log(D)) EDF=4.436 0.004

Specific results from this modelling include:
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Figure 12: Plots showing the predictive contribution of log(D) with respect to NOx at the Inkerman Bridge

site where (a) illustrates the relationship between NOx and log(D) and (b) highlights the quadratic relation-

ship for flow as expressed in Table 6.

Figure 13: Periodic term fit in the generalised additive model for the Inkerman Bridge site across a water

year.
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Figure 14: Residual plots examining the fit of the final model for NOx recorded at the Inkerman Bridge site.

• A possible dilution effect occurring once flow reaches a threshold. This in turn appears to result in an

accumulation of NOx over time as frequent events occur.

• A subtle seasonal effect is noted showing a decrease in NOx between October and January, an

increase between January and May followed by another slight decrease from May through to Septem-

ber.

Estimates of the total load of NOx for each water year at the Inkerman Bridge site are summarised in

Tables 21(b)-24(b) in Appendix A. Figure 15 also summarises the results for each error structure across

water years and provides a comparison with the popular Beale ratio estimator. Table 7 presents the results

from some of the other standard estimators used to calculate a load. The 1990/91 water year once again

is highlighted as having large variability compared to other years which is most likely due to the large

recorded annual flow during that period. Some variation is also noted in the estimate produced for the

1999/2000 water year. Irrespective of the error structure implemented we see that some of the Beale

estimates underestimate the load and lie outside the 95% confidence interval reported from the model.

Once again, the model is able to estimate a load where no concentration data was captured but care must

be taken in the interpretation as the 1997/98 and 2000/01 water years lie outside the range of the modelled

data.

Load estimates produced using some of the standard loads based estimators are shown in Table 7. Both
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(a) (b)

(c) (d)

Figure 15: Summary and comparison of loads estimates for Inkerman bridge for NOx assuming (a) error

structure 1, (b) error structure 2, (c) error structure 3, and (d) error structure 4. The number of concentration

samples collected in each water year (n) is shown along the x-axis.
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of the average based estimators overestimate the load substantially for many of the water years, while the

Ratio and Beale estimators are more comparable to modelled estimates as shown in Figure 15.

Table 7: Estimates of the total NOx load (t) for the average, extrapolation, ratio and Beale estimators

computed at the Inkerman Bridge site.

Water Year n Q̄ Standard Estimators

Average Extrapolation Ratio Beale

1988/1989 3 291.2 218.98 279.32 816.62 846.96

1989/1990 3 296.4 7028.72 9672.3 1060.02 1061.65

1990/1991 6 1277.8 11080.31 14032.03 2143.78 2184.61

1991/1992 34 16.8 9.04 12.96 8.79 8.93

1992/1993 26 17.6 28.78 54.07 38.04 39.4

1993/1994 110 92.8 4981.91 6775.88 1022.78 1024.43

1994/1995 44 24.6 364.69 455.4 161.49 162.21

1995/1996 55 68.4 3060.72 3741.77 530.26 529.43

1996/1997 86 275.2 14075.23 13135.37 2161.34 2160.44

1997/1998 39 286.8 14925.05 14566.12 1581.4 1576.31

1998/1999 70 190.5 1109.75 1160.01 382.29 382.45

1999/2000 100 438.0 6150.01 5739.43 1091.25 1092.09

4.3 Bowen River

The Bowen River catchment is 7,200 km2 in contrast to the much larger Burdekin River catchment which

consists of an area of 130,000 km2. Data from the Bowen River was collected in the 2005/06 water year

and consists of flow collected by NRW at a gauging station at Myuna and recorded hourly (m3/s), while

concentration samples were collected using an ISCO autosampler. Details are provided in Bartley et al.

(2007) and references therein. Figure 16 shows a summary of the TSS and NOx data collected at this

site. Although flow samples have been recorded since the start of the water year, concentration measure-

ments were collected from January, 2006 and were quite sporadic resulting in 40 and 41 concentration

measurements for TSS and NOx respectively been taken overall.

The results from modelling TSS and NOx in the Bowen river are displayed in Table 8 and highlight a linear

term for flow and a smooth term for D to be the most important predictors for TSS and an additional periodic

term for NOx. We did not include a correlation term in either model due to the size of the dataset. The model
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Figure 16: Plot showing flow, TSS and NOx captured at the Myuna site along the Bowen river.

34



4.3 Bowen River 4 CASE STUDY I: BURDEKIN CATCHMENT

for TSS produced a GCV score of 0.454 and explained 80.5% of the variation in the data while the model for

NOx explained 78.2% of the variation in the data (GCV score = 0.567). A model with just a linear term for

flow resulted in under 12% of variation explained by both models, highlighting the importance of the smooth

and periodic terms in these models.

Figure 17 shows the smooth relationship for discounted flow and the linear term for flow which were fit in

both models. The smooth term shown in Figure 17(a) shows some stability at higher flows where data is

represented followed by a decrease in sediment as log(D) increases whereas for NOx, this stabilisation

remains at higher levels (Figure 17(c)). An increase is observed when flow itself increases linearly for both

models, which may also contribute to the exhaustion process. See Figures 17(b) and (d). The periodic

term fitted in the NOx model is shown in Figure 18 and shows increases in the contribution to NOx from

November through to January where the level remains stable through to May.

Figure 17: Plots showing the predictive contribution of log(D) with respect to TSS and NOx for the Myuna

site along the Bowen River, where (a) illustrates the relationship between TSS and log(D), (b) highlights

the linear term for flow, (c) shows the relationship between NOx and log(D) and (d) shows the linear term

for flow for the model predicting NOx.

Specific results from this modelling include:

• Some indication of sediment accumulation stabilising although the confidence intervals shown in Fig-

ure 17 are quite wide in parts.
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Table 8: Parameter estimates from the optimal model fit to TSS and NOx respectively at the Myuna site

in the Bowen River using data collected during the 2005/06 water year. The coefficient (β), standard error

(SE(β)) and p-value are shown for each parameter. This model for TSS had a GCV score of 0.454 and

explained 80.5% of the variation in the data while the model for NOx explained 78.2% of the variation in the

data with GCV score of 0.567.

Model for TSS

Parameter β SE(β) p-value

Intercept 2.144 1.19 0.081

Flow

log(Q̂) 1.298 0.32 < 0.001

Smooth Discounted Flow Term

s(log(D)) EDF=5.67 < 0.001

Model for NOx

Parameter β SE(β) p-value

Intercept -836.4 228.7 0.001

Flow

log(Q̂) 1.20 0.90 0.191

Periodic Term

c1 -958.96 266.2 0.001

s1 661.7 187.3 0.001

c2 -120.95 37.7 0.003

s2 325.87 93.7 0.002

Smooth Discounted Flow Term

s(log(D)) EDF=6.791 0.004
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Figure 18: Periodic term fitted to the Myuna dataset showing the contribution to NOx on the y-axis (log-

scale) and time on the x-axis.

• Increases in flow are indicative of increases in TSS and NOx (Figure 17(b) and (d)).

• Fitting a quadratic term resulted in some inconsistencies with the fit for both models and large standard

errors suggesting that the quadratic term should be dropped. This term is not always appropriate when

modelling smaller datasets.

• Serial correlation was not incorporated due to the size and nature of the data and therefore was not

considered to be an issue.

• A strong increase in NOx from November through to January which remains stable right through to

May.

Estimates of the total load of TSS and NOx for the 2005/06 water year at the Myuna site are summarised in

Table 9 along with Figure 20(a) which summarises these results and compares them with the standard ratio

estimators. When compared to the standard load estimators both the average and extrapolation estimators

overestimated the load whereas the ratio and Beale estimators provided estimates close to the modelled

estimates and reside in our calculated 95% confidence interval. See Table 10 and Figure 20(a).
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(a) (b)

Figure 19: Residual plots for the model fit to (a) TSS and (b) NOx at the Myuna site in the Bowen River.

Table 9: Estimates of the total (corrected, Lc) TSS load (Mt) and NOx load (t) calculated for the Myuna site

in the Bowen River and 95% confidence intervals for 4 different error structures. The average flow across

the year is 6.73 m3/s.

Water Year Error L̂ L̂c SE CV (%) n CIL CIU

α1 α2

TSS (Mt)

2005/06 0 0 1.246 .857 .716 83.5% 40 .17 4.41

2005/06 0.1 0.05 1.246 .857 .724 84.4% 40 .16 4.49

2005/06 0.3 0.1 1.246 .857 .750 87.5% 40 .15 4.76

2005/06 0.5 0.2 1.246 .857 .836 97.5% 40 .13 5.80

NOx (t)

2005/06 0 0 144.82 69.58 21.69 31.2% 41 37.77 128.19

2005/06 0.1 0.05 144.82 69.58 23.05 33.1% 41 36.35 133.19

2005/06 0.3 0.1 144.82 69.58 26.93 39.7% 41 32.59 148.55

2005/06 0.5 0.2 144.82 69.58 38.26 55.0% 41 23.68 204.42
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(a) (b)

Figure 20: Summary of loads estimates for the Myuna site for (a) TSS and (b) NOx.

Table 10: Estimates of the total TSS load (Mt) and NOx load (t) for the Myuna site in the Bowen River for

the average, extrapolation, ratio and Beale estimators.

Water Year Standard Estimators

Average Extrapolation Ratio Beale

TSS (Mt)

2005/06 6.34 11.10 0.71 0.73

NOx (t)

2005/06 1575.8 1757.02 114.39 114.32
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4.4 Mistake Creek

Community groups actively sample in the Burdekin and visit sites that are difficult for staff to travel to during

events or do not have automatic samplers in place. Datasets that capture this type of information can

be quite sparse and generally only represent events. Depending on the ease in which samples can be

taken, samples arise predominantly on the falling limb, although community groups are encouraged to take

samples on both the rise and the fall. Mistake Creek is a site in the Burdekin catchment that represents data

collected by a community volunteer. Data consists of events recorded in 2006 only. Figure 21 shows flow,

TSS and NOx data collected at that site. It is clear from these plots that very few samples of concentration

were collected (n = 5).

Figure 21: Plot showing (a) flow, (b) TSS and (c) NOx captured at the Mistake Creek site along the Bowen

river.

With very few data points, it is difficult to fit a comprehensive model to both types of concentration datasets

with terms that capture hydrological characteristics. In selecting the optimal model, we therefore compared

fitting the intercept (equivalent to an average type estimator) with a linear term for flow and/or a discounted
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flow term. A seasonal term was not appropriate to consider in addition to the rising/falling limb due to the

small sample size. The optimal model for TSS (GCV score of 0.685) was a model that included the intercept

and a linear term for the discounted flow which resulted in explaining approximately 22.8% of the variation

in the data. The linear term for D suggests that as D increases, a decrease in TSS is observed, however

the term is not significant (p-value = 0.42). The strongest model for NOx however was one that included the

intercept term only. Residual plots for both models are displayed in Figure 22 and suggest adequacy of the

model fit despite the small number of observations.

(a) (b)

Figure 22: Residual plots for the model fit to (a) TSS and (b) NOx at the Mistake Creek site in the Burdekin

catchment.

Estimates of the total load for both TSS and NOx are shown in Table 11 and Figure 23 along with the

standard estimators in Table 12. Results highlight a coefficient of variation between 29%-35% for NOx

and 45%-50% for NOx resulting in fairly wide confidence intervals for the load estimate. Compared with the

standard estimators, the modelled estimates compare reasonably well (estimates within the 95% confidence

intervals) with the ratio based estimators. Once again the average estimators tend to overestimate the load.
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Table 11: Estimates of the total (corrected, Lc) TSS load (Mt) and NOx load (t) under four different error

structures. Corresponding 95% confidence intervals are also presented. The average flow across the year

is 3.425 m3/s.

Water Year Error L̂ L̂c SE CV (%) n CIL CIU

α1 α2

TSS (Mt)

2005/06 0 0 .038 .043 .012 28.9% 5 .024 .076

2005/06 0.1 0.05 .038 .043 .013 29.3% 5 .024 .076

2005/06 0.3 0.1 .038 .043 .013 30.6% 5 .024 .078

2005/06 0.5 0.2 .038 .043 .015 35.2% 5 .022 .086

NOx (t)

2005/06 0 0 3.46 5.20 2.36 45.5% 5 2.13 12.68

2005/06 0.1 0.05 3.46 5.20 2.38 45.8% 5 2.12 12.74

2005/06 0.3 0.1 3.46 5.20 2.42 46.6% 5 2.08 12.96

2005/06 0.5 0.2 3.46 5.20 2.59 49.8% 5 1.96 13.79

(a) (b)

Figure 23: Summary of loads estimates for Mistake Creek for (a) TSS and (b) NOx.
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Table 12: Estimates of the total TSS load (Mt) and NOx load (t) at the Myuna site in the Bowen River for the

average, extrapolation, ratio and Beale estimators.

Water Year Standard Estimators

Average Extrapolation Ratio Beale

TSS (Mt)

2005/06 1.178 1.218 0.083 0.082

NOx (t)

2005/06 123.78 136.4 9.297 9.462

4.5 Summary of Results for the Burdekin Catchment

There are clear advantages from modelling multiple years worth of data. The first and most important

advantage is that it builds in history, a time series of flow and concentration characteristics that can be

used to predict across the entire time frame. This approach also allows us to observe trends through time

(whether seasonal or long term) and it aids in the understanding of concentration and flow relationships

and how they might differ for different types of concentrations we are interested in. We could of course

fit models to each water year separately. In doing so we may find that a much simpler model is required

because the seasonal and long term patterns of flow and concentration are not apparent in a shorter time

series, especially where there might be few concentration measurements with which to build the model on.

Tables 13 and 14 summarise the models fit to the three sets of data in the Burdekin catchment. Table 13

indicates the types of terms fit in each model where a (X) represents that a term was fitted and a (×)

indicates the term was omitted. Where crosses are marked for all terms, only the intercept was fit in the

model. It is clear from this table that as the size of the dataset decreases, a smaller number of terms are fit in

the model. This table also shows that different terms may be applicable for different types of responses. For

example, a seasonal term is fit to the Inkerman Bridge dataset for NOx whereas for TSS, the rising/falling

limb term is more appropriate. This highlights the importance for investigating a range of models for the

data of interest rather than fitting the same suite of terms to all datasets investigated.

In terms of selecting an optimal model for each dataset, we see in Table 14 that fitting additional terms that

attempt to mimic important hydrological characteristics is beneficial and provides a much better prediction,

and thus a more precise estimate of the load. In particular the % deviance explained for the optimal model

compared to fitting a model with just flow or a quadratic term for flow increases substantially.
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Table 13: Summary of results for TSS and NOx for the Burdekin catchment

Site Scale Concentration Important Covariates

Parameter Linear Flow Quadratic Flow Seasonal Limb D

Inkerman Bridge End-of-catchment TSS X X × X X

NOx X X X × X

Bowen River Subcatchment TSS X × × × X

NOx X × X × X

Mistake Creek Local TSS × × × × X

NOx × × × × ×

Table 14: A summary of models fit to the Burdekin data in terms of the % deviance explained. NA’s

represent models that could not be fit to the data.

Site Concentration % Deviance Explained

Parameter Optimal Model Quadratic Flow Only Linear Flow Only

Inkerman Bridge TSS 47.3% 33.2% 32.8%

NOx 43.3% 29.7% 17.2%

Bowen River TSS 80.5% 5.1% 0.2%

NOx 78.2% 14.3% 12.1%

Mistake Creek TSS 22.8% NA 6.69%
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5 CASE STUDY II: TULLY CATCHMENT

5.1 Catchment characteristics

The Tully river in North Queensland, Australia is a small, faster flowing tropical river that extends approxi-

mately 130km before discharging into Rockingham Bay. The Tully catchment itself is located in the southern

part of the Wet Tropics region in Queensland covering an area of 2790 km2 when combined with the Murray

catchment (Furnas, 2003). Topography of the catchment varies from steep mountainous areas in the west

to the low relief floodplain in the east (Karim et al., 2008). Flow discharge within each year is highly vari-

able, peaking between February through to April. As the topography is flat and the location of the Tully and

Murray rivers is close, floodwaters have the tendency to merge during floods causing the export of sediment

and nutrients to be much higher when compared to the annual average riverine load (Wallace et al., 2008).

5.2 Tully River

Flow records from the Tully were collected during the period 1 July 2000 to 16 April 2008, spanning approx-

imately 8 years and consisting of 51,866 observations. Flow data was collected at irregular time intervals

ranging from 0.16 to 34 hours with a mean of 1.32 and a median of 0.66 hours. For some periods flow

measurements are taken at intervals of a few days, but for much of the year the flow measurements are

only approximately monthly. The total suspended solid concentration data were collected at sporadic time

intervals, usually corresponding to an event. Figure 24 shows a plot of flow and concentration records for

the 8 years of data collected in the Tully river. Note the increase in concentrations recorded during the later

years.

We examined a range of GAM models which considered incorporating a quadratic term for flow, rising/falling

limb, a seasonal term and a discounted flow term. The strongest model (GCV score = 0.33) included all of

these terms with the exception of the term incorporating the rising/falling limb. The results are displayed in

Table 15 and Figure 26. Residual plots examining the fit of the model are shown in Figure 25 and indicate

a reasonable fit to the data.

The final model explained 76.3% of the variation in the data, which was much higher compared to a model

which just incorporates flow (49.9% explained). Figure 26 summarises the results shown in Table 15 and

shows that as flow increases, TSS increases. Furthermore, as large events occur more frequently, TSS

tends to decrease indicating possible exhaustion of the system and dilution of material occurring. The
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Figure 24: Plot showing (a) flow and (b) TSS captured at the Euramo site along the Tully river.
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Figure 25: Residual plots for the final GAM model fit to the tully dataset.

periodic term is visualised in Figure 27 and shows increases in TSS in December and January, representing

the peak of the wet season with a gradual decrease until September where another increase is observed.

Figure 26: Plots showing the predictive contribution of log(D) with respect to NOx for the Euramo site

along the Tully River, where (a) illustrates the relationship between TSS and log(D) and (b) highlights the

quadratic relationship for flow as expressed in Table 15.

Estimates of loads produced for the eight years of the Tully are presented in Figure 28 and Tables 25-

28 in Appendix B. Standard estimators are presented in Table 16 along with the average flow recorded

for each water year. Results indicate some differences between the modelled estimates compared to the

Beale estimator represented by the red points in Figures 28. In fact all estimators were quite variable

compared to the modelled response. As the measurement and spatial error increases, the error around
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Table 15: Parameter estimates from the optimal model fit to TSS at the Euramo site along the Tully river

using 8 years worth of data. The coefficient (β), standard error (SE(β)) and p-value are shown for each

parameter. This model had a GCV score of 0.33 and explained 76.3% of the variation in the data. The

estimated serial correlation was 0.15.

Parameter β SE(β) p-value

Intercept -12.890 2.96 < 0.001

Flow

log(Q̂) 3.992 1.083 < 0.001

log(Q̂)2 -0.182 0.097 0.062

Periodic

c1 -0.048 0.16 0.763

s1 0.290 0.15 0.061

c2 -0.067 0.11 0.540

s2 0.135 0.10 0.193

Smooth Flow Term

s(log(D)) EDF=2.578 < 0.001

Figure 27: Periodic term fit in the generalised additive model for the Euramo site in the Tully River
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(a) (b)

(c) (d)

Figure 28: Summary and comparison of loads estimates for the Euramo site along the Tully river for TSS

assuming (a) error structure 1, (b) error structure 2, (c) error structure 3, and (d) error structure 4. The

number of concentration samples collected in each water year (n) is shown along the x-axis.
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the modelled estimates increased and in some cases, these intervals incorporated the Beale estimates.

In some instances, the average estimator was more in line with the modelled results (see Table 16, early

years). Specific results include:

• Increases in TSS as flow increases in the wetter periods.

• A possible dilution effect occurring due to the frequent high events.

• Low estimates of TSS across the 8 years compared to estimates produced from the Burdekin and

compared with the standard estimators.

Table 16: Estimates of the total TSS load (Mt) for the average, extrapolation, ratio and Beale estimators.

Water Year n Q̄ Standard Estimators

Average Extrapolation Ratio Beale

2000/2001 5 113.5 0.112 0.143 0.171 0.177

2001/2002 4 38.6 0.006 0.006 0.015 0.014

2002/2003 8 46.1 0.023 0.027 0.035 0.035

2003/2004 28 104.5 0.413 0.603 0.34 0.344

2004/2005 3 70.3 0.005 0.006 0.015 0.015

2005/2006 20 115.0 0.309 0.47 0.28 0.284

2006/2007 12 125.2 0.716 0.808 0.265 0.265

2007/2008 66 141.0 0.521 0.612 0.347 0.347

6 VALIDATION OF THE METHOD

A simulation study was constructed to investigate (1) the modelling methodology and its comparison with

other existing methods for load estimation and (2) sampling strategies for wet and dry catchments. We will

focus initially on a preliminary investigation of (1) and devise a simulation study that examines and compares

the proposed loads methodology with standard methods. We will only touch briefly on the second part to

this problem and leave the investigation to the final stage of this project in 2009/10.

GBR catchments have not been the focus of intensive, long-term discharge and sediment/nutrient sampling.

Long-term, high-resolution discharge/stage height data is available for many catchments, however the fre-

quency of sediment and nutrient sampling has been quite varied and is typically of low temporal resolution

(e.g. monthly ambient with more frequent event-based sampling). Ideally, comparison of load estimation
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methods is best achieved using a data set where both discharge and sediment and nutrient concentrations

have been sampled at a high frequency. Such a dataset can first be used to calculate a ’best-case’ load

estimate, which can then be degraded into the forms expected under typical sampling regimes and the

loads estimated and compared using the various methods under consideration. The results obtained can

then be compared with the ”best-case” load in order to ascertain the most accurate method.

In the absence of a high-resolution GBR dataset we turned two high resolution United States Geological

Survey (USGS) datasets to facilitate the preliminary comparison of the various load estimators. The first

dataset is derived from a gauging/sampling site on the San Juan River in New Mexico and represents daily

values of discharge and sediment concentration, spanning 36 years (1950-1986) and comprising approxi-

mately 13,000 discharge and TSS samples. This site is consistent with sites located in wet catchments of

the GBR (see Figure 29(a)). The second site is more typical of a site located in drier parts of the GBR such

as the Burdekin, although it represents a much smaller catchment area (117 km2) and spans 16 years. The

site is located in San Juan Creek at San Juan Capistrano in California and exhibits two large events which

occur between 1982 and 1983 followed by three smaller flushes (see Figure 30). Note that the wet or flushy

site does not present a strong relationship between concentration and flow when compared to the dry site

(see Figure 29(b) and Figure 30(b)).

(a) (b)

Figure 29: Plots for a wet site (Station 9368000) extracted from the USGS database which show (a) flow

and concentration for the last 5 years and (b) the relationship between concentration and flow.
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(a) (b)

Figure 30: Plots for a dry site (Station 11046550) extracted from the USGS database which show (a) flow

and concentration for the last 5 years and (b) the relationship between concentration and flow.

6.1 Simulation Study

We conducted a preliminary simulation study to investigate the performance of the methodology outlined

in Section 3 and compared it to four standard loads estimators: Average, Extrapolation, Beale and Ratio

estimators. We based the simulation study on the last 5 years worth of data purely for computational con-

venience. We investigated five different GAM models in this simulation study and these are summarised in

Table 17. Note that other models which include interactions could be investigated but we limit the investiga-

tion to these 5 models for this study.

Data was simulated probabilistically using the following equation,

ps = (pH − pL)(
1

1 + exp{−(aQ)/[Qmin + b(Qmax −Qmin)] + a}
) + pL (8)

where ps represents the probability of the concentration value associated with discharge, Q being retained

in the dataset; Q represents the discharge value, Qmin and Qmax represents the minimum and maximum

discharge values respectively in the dataset; pH represents the maximum desired probability of retaining

within the dataset a concentration value associated with an ”event” grade discharge (i.e. function asymp-

totes to this value with increasing discharge), represents the minimum desired probability of retaining within

the dataset a concentration value associated with an event grade discharge (i.e. the function asymptotes
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Table 17: Summary of generalised additive models (GAM) fit in the simulation study. A tick indicates that

the term was fit in the model.

Model Intercept log(Q) log(Q2) Periodic Rising/Falling Discounted Correlation

Limb Flow

GAM1 X X X X X X X

GAM2 X X X X X X

GAM3 X X X

GAM4 X

GAM5 X X

to this value with decreasing discharge); a controls the rate of change of ps around the inflection point and

b controls the location of the inflection point or the event threshold. In this study we define an event day as

one where flow exceeds the 90th percentile daily discharge. Note this simulation approach results in an n

(number of samples) that is variable across the entire set of simulations.

We investigated five scenarios for each site. These scenarios are summarized in Table 18 and represent

1. stratified sampling: sampling is stratified such that event-days are sampled more frequently than

ambient-flow-days.

2. event only monitoring: proportion of event class flow-days that are sampled ensuring no ambient

sampling is conducted.

3. equal rates of ambient and event based monitoring

4. ambient only monitoring

5. community based sampling: reflects the way in which community samples are undertaken (i.e. few

samples taken at large events).

Table 18: Parameters used to simulate the five different scenarios investigated in the simulation study.

Sampling Scenario pH pL a b

Stratified (80/10) 0.8 0.1 10 0.2

Event Only (100/0) 1 0 10 0.2

Stratified (50/50) 0.5 0.5 10 0.2

Ambient Only (0/3.3) 0 0.033 150 0.2

Community 1 0 10 0.2
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For each type of catchment we conducted 1000 simulations, from which, we calculated the mean square

error (MSE) for each of the GAMs models shown in Table 17 and the four standard estimators investigated.

We assume measurement error is zero for all simulations for the purpose of making comparisons. We

summarise the results for each simulation scenario below.

6.1.1 Simulations of a wet site

Figure 31 and Figure 32(a) summarises the five sampling scenarios investigated for the wet site chosen from

the USGS dataset (samples are shown in blue along the time series). The ambient only scenario selects on

average 46 samples across the 5 years or 12 per year. Note, we would typically expect 60 samples to be

selected on average as it represents monthly sampling however part of 1987 was not available. The event

only scenario selects on average 260 samples across the 5 year period while stratified (80/3.3) sampling

selects on average 445 samples while the stratified (20/20) selects approximately 338 samples. Community

based monitoring selects approximately 46 samples across the 5 year period due to the number of flushes

that occur throughout the period.

We summarise the results from the simulation in Table 19 and Figures 33 and 34 which highlights the

best models as indicated by the mean square error calculated across the 1000 simulations. Results are

presented by water year and to simplify results we placed a tick in the table cell where a group of models

was found to perform well (i.e. have a low MSE). The groups correspond to G (Any of the GAM models

presented in Table 17), R (either the ratio or Beale estimator) and A (either the average or extrapolation

estimators). If any of the models in these groups was found to perform well, a tick was placed in the cell of

the table otherwise it was left blank.

The results show some variability between years, sampling scenarios and methods however, it is clear that

across most years the generalised additive models investigated perform reasonably well and in fact, for

event only scenarios outperform the ratio and average based estimators. It is hardly surprising that the

majority of methods perform well in ambient only situations. In this scenario we find the GAM4 (equivalent

to average based estimator) and GAM5 models to give comparable results to the average and ratio based

estimators.

6.1.2 Simulations of a dry site

Figure 35 and Figure 32(b) summarise the five sampling scenarios investigated for the dry site chosen from

the USGS dataset (samples are shown in blue along the time series). The ambient only scenario selects on
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(a) (b)

(c) (d)

Figure 31: Sampling scenarios generated for a wet catchment site using the USGS data based on (a)

stratified (80/10), (b) event only, (c) stratified (50/50) and (d) ambient only sampling.
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(a) (b)

Figure 32: Sampling scenarios generated for (a) a wet catchment site and (b) a dry catchment site using

the USGS data based on community sampling

Table 19: Summary of results by year from the wet catchment scenarios where we highlight the best models

representing those with low mean square errors reported from the simulation study. Models are grouped

into 3 types: GAM (G), Ratio (R) and Average (A).

Year

Sampling Scenario 81/82 82/83 83/84 84/85 85/86

G R A G R A G R A G R A G R A

Stratified (80/3.3) X X X X X X X

Event Only (50/0) X X X X X

Stratified (20/20) X X X X X X

Ambient Only (0/3.3) X X X X X X X X X X X

Community X X X X X
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(a) (b)

(c) (d)

Figure 33: Plots showing the MSE (on the log scale) from all models fitted in (a) the stratified (80/10), (b)

event only, (c) stratified (20/20) and (d) ambient only scenarios for the wet catchment.

57



6.1 Simulation Study 6 VALIDATION OF THE METHOD

Figure 34: Plots showing the MSE (on the log scale) from all models fitted in the community sampling

scenario for the wet catchment.

average 60 samples across the 5 years or 12 per year as it represents monthly sampling, while the event

based scenario for this site targets approximately 12 samples across the 5 year period due to the small

number of ”events” that occurred. Stratified (80/10) sampling selects on average 190 samples while the

stratified (50/50) selects approximately 913 samples. Community based monitoring selects approximately

3 samples across the 5 year period. These samples tend to be related to the large event in 1983 as shown

in Figure 30.

We summarise the results from the simulation in Table 20 and Figures 36 and 37 which highlights the

best models as indicated by the mean square error calculated across the 1000 simulations. Results are

presented by water year similar to those presented for the wet site, i.e. we placed a tick in the table cell

where a group of models was found to perform well (i.e. have a low MSE).

The results for the dry catchment are quite contrasting to the wet catchment. Little variability is shown

between years, sampling scenarios and methods, apart from the event only and community sampling sce-

narios. Overall, the majority of methods perform well. In event only situations however, the GAM and ratio

methods performed the best.
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(a) (b)

(c) (d)

Figure 35: Sampling scenarios generated for a dry catchment site using the USGS data based on (a)

stratified 80/10, (b) event only, (c) stratified 50/50 and (d) ambient only sampling.
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(a) (b)

(c) (d)

Figure 36: Plots showing the MSE (on the log scale) from all models fitted in (a) the stratified (80/10), (b)

event only, (c) stratified (50/50) and (d) ambient only scenarios for the dry catchment.
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Table 20: Summary of results by year from the dry catchment scenarios where we highlight the best models

representing those with low mean square errors reported from the simulation study. Models are grouped

into 3 types: GAM (G), Ratio (R) and Average (A).

Year

Sampling Scenario 81/82 82/83 83/84 84/85 85/86

G R A G R A G R A G R A G R A

Stratified (80/10) X X X X X X X X X X X

Event Only (100/0) X X X X X X X X X

Stratified (50/50) X X X X X X X X X X X X X X

Ambient Only (0/3.3) X X X X X X X X X X X X X X

Community X X X X X X X X X X X X

Figure 37: Plots showing the MSE (on the log scale) from all models fitted in the community sampling

scenario for the wet catchment.
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6.2 Conclusions

This simulation study presents work in progress and requires some further investigation and fine tuning of

the approach. In particular,

• We need to obtain confirmation about the sites chosen in the USGS that adequately reflect wet and

dry sites in the GBR so adequate comparisons can be made.

• We need to obtain confirmation about the data simulation scenarios that are chosen to reflect different

types of sampling regimes used in practice to ensure our results and conclusions about methodologies

are realistic.

Once these items are assured we can adequately comment on current sampling designs and make some

recommendations regarding the frequency and number of samples to take at a site that is characterised by

the intensity of flow (i.e. wet or dry). Initial results are promising as the new methodology seems to work

well if not better than standard loads estimators, particularly for wet catchments.
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7 DISCUSSION

In this final report, we have developed and demonstrated a regression approach through simulation and

application that appears to be flexible enough for predicting concentration and calculating a load for a range

of datasets with varying flow and concentration characteristics.

It is clear from the models fit to the Tully and Burdekin sites that there is no one regression model that

can be fit to all datasets. The relationship between flow and concentration and the nature of the sampling

undertaken will dictate the type of model required. In some situations, a model with flow and concentration

only will provide an adequate model, however in other situations, although there may not be an obvious

relationship between flow and discharge, other variables such as the discounted flow or rising/falling limb

may be important. For sites with limited sampling a linear term for flow may be suitable. These terms need

to be thoroughly investigated in any modelling exercise undertaken and it is recommended that standard

diagnostics plots in addition to examining the GCV score and % deviance explained from the model is

required to ensure the model fit is adequate and problems such as overfitting are not experienced.

As identified in earlier reports (Kuhnert et al., 2008), regression estimators can be highly biased, especially if

systematic sampling is used in an event responsive system (Preston et al., 1992). Preston et al. (1989) also

found that estimates of load produced via a regression approach can be less accurate than those produced

by the ratio estimator if a small number of samples are collected and the relationship is not well understood.

However, in these examples, other covariates were not explored and the models were based predominantly

on functions of flow. Despite this, regression-based estimates improve when adequate sampling has been

undertaken over a vast range of conditions, thus providing the best estimates with low error.

Some may argue in instances where the regression based estimators are estimating a load similar to the

standard load based estimators that there is no need to change to a regression based estimator. However,

the focus of this report has not only been around the load based estimator and the actual estimate of

total load, but the corresponding estimate of the uncertainty around that load. In our investigations, we

have been able to demonstrate a method that is able to include and account for different forms of error to

produce a confidence interval for the load. Furthermore, in situations where multiple years worth of data

have been collected for a site, the GAM model has the capacity to incorporate all data, incorporate trend

and seasonal terms as well as other terms that capture some of the common hydrological characteristics

of these river systems. Interpretation of these characteristics can then be visualised and inferences can be

drawn accordingly.
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8 CONCLUSIONS AND FUTURE WORK

The following conclusions can be drawn from this analysis:

1. Depending on the nature of the sampling and assumptions about measurement and spatial error, the

coefficient of variation CV can be as low as 5% (heavily sampled) and as high as 80% (community

based datasets).

2. We found that loads estimates were similar to standard ratio based estimators at sites where sam-

pling bias was minimal (e.g. Inkerman Bridge, Burdekin) but much smaller when the bias was large

(e.g. Tully). The regression based methodology offers a novel way of capturing all forms of bias and

uncertainty that we believe leads to a more robust estimate of the load compared to other estimators.

The average based estimators consistently estimated a higher load compared to the modelled based

estimators except when samples were taken at regularly based intervals and the only significant term

fitted in the model was the constant term (e.g. Mistake Creek).

3. The generalised regression based approach is general enough to incorporate a range of different

models from models involving just flow to more complicated models that incorporate other covariates

(e.g. rising/falling limb, discounted cumulative flow) and possibly interaction terms. Different covari-

ates may be important in different catchments because the underlying hydrological and catchment

processes vary and their contribution in a model can be graphically explored to determine the reason

why a large load has been estimated in any particular water year. This represents a novel feature of

the regression based approach not offered by standard load based estimators.

4. Serial correlation may also be an issue and needs to be accounted for where appropriate as high

correlations can lead to larger standard errors.

5. Sites with small numbers of concentration samples can also be modelled, although the number and

type of covariates incorporated into the model are limited. At worst, the model defaults to the popular

average type estimator.

6. Stochastic uncertainty is adequately dealt with by predicting concentration at regular flow intervals

and estimating the load accordingly. This eliminates unwanted bias effectively.

7. The regression approach allows us to borrow strength across years to characterise relationships better

and improve the estimation of loads, particularly in years where sampling is poor.

8. The framework presented here is general enough to be applied to all GBR catchments.
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We have targeted a number of areas of future work which will help to operationalise the methodology

presented here. These are outlined below.

• [TASK1] Further validation of the methodology through simulation is required. We have performed a

preliminary investigation of the methodology through a simulation exercise in this report but some fur-

ther fine tuning of parameters are required (e.g. choice of discounting, percentile for defining a ”flush”,

evaluating redundancy and whether all process representations are required, additional covariates).

Selection of suitable datasets for simulation also requires discussion with key stakeholders (QDERM

and JCU) to ensure they are representative of catchments in the GBR and whether other Australian

longterm datasets are available may be more suitable, or whether ”true load” measurements are

available with which to validate the sample-based modelling methods (eg continuous turbidity for sed-

iment).

• [TASK2] Investigate how new data consisting of new sites over other monitoring years can be incor-

porated into the analysis and how well existing models can predict concentration at these sites.

• [TASK3] Investigate computational issues for the standard error calculation. Currently for large

datasets, the standard error calculation involves inverting a large matrix. Approaches that speed

up the calculation of the standard error are of interest.

• [TASK4] Expand the simulation approach to investigate and inform current sampling regimes with the

aim of having direct input into future monitoring schemes in the GBR.

• [TASK5] Operationalise methods through workshops and interactions with key stakeholders (QDERM

and JCU) using case studies in the GBR (e.g. Burdekin & Tully).

• [TASK6] Focus on the interpretation of the model outputs and the reporting of loads.

• [TASK7] Publishing results in a number of applied and theoretical publications to provide greater

confidence in the methods via peer review. Currently we have one publication in the Modelling and

Simulation (MODSIM) conference and a second paper in the pipeline that outlines the methodology

intended for submission into Water Resources Research.
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A Loads Estimates for Inkerman Bridge, Burdekin Catchment

Estimates of TSS and NOx are presented from the Inkerman Bridge site in the Burdekin catchment for a

range of error structures. In each table we present the estimated load, L̂, the corrected load, L̂c (corrected

for bias), the standard error, SE of the corrected load, the coefficient of variation, CV represented as a

percentage, the number of concentration records observed, n and the lower (CIL) and upper (CIU ) 95%

confidence intervals. The error structures investigated for α1 (measurement error) and α2 (spatial error) are

as follows:

1. Error Structure 1: No measurement or spatial error (α1 = 0, α2 = 0)

2. Error Structure 1: Mild measurement and spatial error (α1 = 0.1, α2 = 0.05)

3. Error Structure 1: Moderate measurement and spatial error (α1 = 0.3, α2 = 0.1)

4. Error Structure 1: Large measurement and spatial error (α1 = 0.5, α2 = 0.2)
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Table 21: Estimates of (a) the total TSS load (Mt) and (b) NOx load (t) assuming error structure 1 (α1 =

0,α2 = 0).

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 3.148 3.497 1.35 38.5 0 1.64 7.44

1988/1989 8.323 8.804 3.98 45.2 0 3.63 21.36

1989/1990 4.230 4.827 0.72 14.9 3 3.60 6.47

1990/1991 37.786 40.198 14.54 36.2 2 19.78 81.69

1991/1992 0.049 0.055 0.01 19.1 1 0.04 0.08

1992/1993 0.053 0.059 0.01 18.5 0 0.04 0.09

1993/1994 1.035 1.189 0.21 17.4 0 0.85 1.67

1994/1995 0.078 0.089 0.01 15.2 0 0.07 0.12

1995/1996 0.684 0.784 0.15 19.6 19 0.53 1.15

1996/1997 5.557 6.301 1.33 21.0 78 4.17 9.52

1997/1998 8.612 9.132 3.93 43.1 39 3.93 21.24

1998/1999 1.412 1.630 0.19 11.6 70 1.30 2.05

1999/2000 5.831 6.677 1.04 15.6 100 4.92 9.07

2000/2001 1.153 1.326 0.23 17.2 0 0.95 1.86

(a)

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 461.962 775.856 308.86 39.8 0 355.57 1692.95

1988/1989 1316.849 2220.766 676.3 30.5 3 1222.58 4033.92

1989/1990 1603.689 2723.637 815.32 29.9 3 1514.74 4897.34

1990/1991 7220.078 12028.916 4196.74 34.9 6 6070.82 23834.49

1991/1992 18.38 31.009 7.67 24.7 34 19.09 50.37

1992/1993 21.012 35.47 10.28 29 26 20.1 62.6

1993/1994 353.695 605.492 211.24 34.9 110 305.59 1199.7

1994/1995 42.02 71.681 20.34 28.4 44 41.11 125

1995/1996 192.963 329.376 116.24 35.3 55 164.92 657.82

1996/1997 1341.801 2286.486 716.51 31.3 86 1237.16 4225.84

1997/1998 1249.699 2079.621 850.38 40.9 39 933.06 4635.08

1998/1999 699.026 1197.151 286.12 23.9 70 749.39 1912.45

1999/2000 2397.393 4081.377 1312.13 32.1 100 2173.44 7664.19

2000/2001 317.6 537.993 193.21 35.9 0 266.12 1087.62

(b)
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Table 22: Estimates of (a) the total TSS load (Mt) and (b) NOx load (t) assuming error structure 2 (α1 =

0.1,α2 = 0.05).

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 3.148 3.497 1.42 40.6 0 1.58 7.76

1988/1989 8.323 8.804 4.16 47.2 0 3.49 22.21

1989/1990 4.23 4.827 0.86 17.9 3 3.4 6.86

1990/1991 37.786 40.198 15.65 38.9 2 18.75 86.2

1991/1992 0.049 0.055 0.01 19.1 1 0.04 0.08

1992/1993 0.053 0.059 0.01 18.6 0 0.04 0.09

1993/1994 1.035 1.189 0.23 19.5 0 0.81 1.74

1994/1995 0.078 0.089 0.01 15.3 0 0.07 0.12

1995/1996 0.684 0.784 0.17 21.4 19 0.52 1.19

1996/1997 5.557 6.301 1.5 23.8 78 3.95 10.05

1997/1998 8.612 9.132 4.12 45.2 39 3.77 22.13

1998/1999 1.412 1.63 0.22 13.6 70 1.25 2.13

1999/2000 5.831 6.677 1.28 19.1 100 4.59 9.72

2000/2001 1.153 1.326 0.26 19.6 0 0.9 1.95

(a)

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 461.962 775.856 309.684 39.9 0 354.83 1696.47

1988/1989 1316.849 2220.766 679.324 30.6 3 1219.32 4044.71

1989/1990 1603.689 2723.637 818.74 30.1 3 1511.02 4909.41

1990/1991 7220.078 12028.916 4202.367 34.9 6 6065.26 23856.34

1991/1992 18.38 31.009 7.842 25.3 34 18.89 50.91

1992/1993 21.012 35.47 10.425 29.4 26 19.94 63.1

1993/1994 353.695 605.492 212.052 35 110 304.79 1202.86

1994/1995 42.02 71.681 20.594 28.7 44 40.82 125.88

1995/1996 192.963 329.376 116.748 35.4 55 164.43 659.79

1996/1997 1341.801 2286.486 718.904 31.4 86 1234.62 4234.51

1997/1998 1249.699 2079.621 851.826 41 39 931.8 4641.39

1998/1999 699.026 1197.151 288.954 24.1 70 745.92 1921.35

1999/2000 2397.393 4081.377 1315.775 32.2 100 2169.64 7677.62

2000/2001 317.6 537.993 193.871 36 0 265.48 1090.24

(b)
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Table 23: Estimates of (a) the total TSS load (Mt) and (b) NOx load (t) assuming error structure 3 (α1 =

0.3,α2 = 0.1).

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 3.148 3.497 1.66 47.6 0 1.38 8.89

1988/1989 8.323 8.804 4.77 54.2 0 3.05 25.45

1989/1990 4.23 4.827 1.21 25 3 2.96 7.88

1990/1991 37.786 40.198 18.78 46.7 2 16.09 100.45

1991/1992 0.049 0.055 0.01 19.1 1 0.04 0.08

1992/1993 0.053 0.059 0.01 18.6 0 0.04 0.09

1993/1994 1.035 1.189 0.3 25.1 0 0.73 1.94

1994/1995 0.078 0.089 0.01 15.6 0 0.07 0.12

1995/1996 0.684 0.784 0.21 26.4 19 0.47 1.32

1996/1997 5.557 6.301 1.95 31 78 3.43 11.57

1997/1998 8.612 9.132 4.74 51.9 39 3.3 25.27

1998/1999 1.412 1.63 0.3 18.4 70 1.14 2.34

1999/2000 5.831 6.677 1.82 27.3 100 3.91 11.4

2000/2001 1.153 1.326 0.34 25.5 0 0.8 2.19

(a)

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 461.962 775.856 312.19 40.2 0 352.59 1707.25

1988/1989 1316.849 2220.766 688.4 31 3 1209.59 4077.25

1989/1990 1603.689 2723.637 829.01 30.4 3 1499.89 4945.83

1990/1991 7220.078 12028.916 4219.36 35.1 6 6048.49 23922.48

1991/1992 18.38 31.009 8.33 26.9 34 18.32 52.49

1992/1993 21.012 35.47 10.85 30.6 26 19.47 64.62

1993/1994 353.695 605.492 214.52 35.4 110 302.36 1212.52

1994/1995 42.02 71.681 21.35 29.8 44 39.98 128.52

1995/1996 192.963 329.376 118.28 35.9 55 162.94 665.82

1996/1997 1341.801 2286.486 726.13 31.8 86 1226.99 4260.84

1997/1998 1249.699 2079.621 856.24 41.2 39 927.93 4660.72

1998/1999 699.026 1197.151 297.34 24.8 70 735.75 1947.9

1999/2000 2397.393 4081.377 1326.77 32.5 100 2158.21 7718.27

2000/2001 317.6 537.993 195.87 36.4 0 263.55 1098.21

(b)
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Table 24: Estimates of (a) the total TSS load (Mt) and (b) NOx load (t) assuming error structure 4 (α1 =

0.5,α2 = 0.2).

Water Year L̂ L̂c SE CV (%) n CIL CIU

1987/1988 3.148 3.497 2.31 66 0 0.96 12.74

1988/1989 8.323 8.804 6.38 72.5 0 2.13 36.47

1989/1990 4.23 4.827 2.05 42.6 3 2.1 11.12

1990/1991 37.786 40.198 27.54 68.5 2 10.49 153.97

1991/1992 0.049 0.055 0.01 19.2 1 0.04 0.08

1992/1993 0.053 0.059 0.01 18.8 0 0.04 0.09

1993/1994 1.035 1.189 0.47 39.8 0 0.54 2.59

1994/1995 0.078 0.089 0.01 16.7 0 0.06 0.12

1995/1996 0.684 0.784 0.31 40 19 0.36 1.72

1996/1997 5.557 6.301 3.13 49.7 78 2.38 16.68

1997/1998 8.612 9.132 6.44 70.6 39 2.29 36.41

1998/1999 1.412 1.63 0.5 30.9 70 0.89 2.99

1999/2000 5.831 6.677 3.15 47.1 100 2.65 16.81

2000/2001 1.153 1.326 0.55 41.1 0 0.59 2.97

(a)

1987/1988 461.962 775.856 321.86 41.5 0 344.08 1749.46

1988/1989 1316.849 2220.766 723.34 32.6 3 1172.87 4204.92

1989/1990 1603.689 2723.637 868.59 31.9 3 1457.77 5088.74

1990/1991 7220.078 12028.916 4286.14 35.6 6 5983.03 24184.2

1991/1992 18.38 31.009 10.03 32.3 34 16.45 58.45

1992/1993 21.012 35.47 12.42 35 26 17.86 70.44

1993/1994 353.695 605.492 223.98 37 110 293.24 1250.22

1994/1995 42.02 71.681 24.14 33.7 44 37.05 138.69

1995/1996 192.963 329.376 124.11 37.7 55 157.38 689.36

1996/1997 1341.801 2286.486 754.06 33 86 1197.97 4364.05

1997/1998 1249.699 2079.621 873.36 42 39 913.07 4736.56

1998/1999 699.026 1197.151 328.62 27.5 70 699.01 2050.28

1999/2000 2397.393 4081.377 1369.49 33.6 100 2114.38 7878.25

2000/2001 317.6 537.993 203.56 37.8 0 256.27 1129.41

(b)

74



B LOADS ESTIMATES FOR THE TULLY RIVER AT EURAMO

B Loads Estimates for the Tully River at Euramo

Estimates of TSS and NOx are presented from the Euramo site along the Tully River for a range of error

structures. In each table we present the estimated load, L̂, the corrected load, L̂c (corrected for bias),

the standard error, SE of the corrected load, the coefficient of variation, CV represented as a percentage,

the number of concentration records observed, n and the lower (CIL) and upper (CIU ) 95% confidence

intervals. The error structures investigated for α1 (measurement error) and α2 (spatial error) are as follows:

1. Error Structure 1: No measurement or spatial error (α1 = 0, α2 = 0)

2. Error Structure 1: Mild measurement and spatial error (α1 = 0.1, α2 = 0.05)

3. Error Structure 1: Moderate measurement and spatial error (α1 = 0.3, α2 = 0.1)

4. Error Structure 1: Large measurement and spatial error (α1 = 0.5, α2 = 0.2)

Table 25: Estimates of the total TSS load (Mt) assuming error structure 1 (α1 = 0,α2 = 0).

Water Year L̂ L̂c SE CV (%) n CIL CIU

2000/2001 0.09 0.104 0.008 7.7 5 0.09 0.12

2001/2002 0.014 0.016 0.002 12.8 4 0.01 0.02

2002/2003 0.021 0.024 0.003 13.6 8 0.02 0.03

2003/2004 0.078 0.09 0.009 9.5 28 0.07 0.11

2004/2005 0.034 0.038 0.004 9.2 3 0.03 0.05

2005/2006 0.082 0.093 0.011 11.6 20 0.07 0.12

2006/2007 0.092 0.105 0.008 7.2 12 0.09 0.12

2007/2008 0.074 0.085 0.006 7.3 66 0.07 0.1
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Table 26: Estimates of the total TSS load (Mt) assuming error structure 2 (α1 = 0.1,α2 = 0.05).

Water Year L̂ L̂c SE CV (%) n CIL CIU

2000/2001 0.09 0.104 0.017 16.6 5 0.07 0.14

2001/2002 0.014 0.016 0.003 20.5 4 0.01 0.02

2002/2003 0.021 0.024 0.005 20.8 8 0.02 0.04

2003/2004 0.078 0.09 0.015 17 28 0.06 0.12

2004/2005 0.034 0.038 0.007 18.2 3 0.03 0.05

2005/2006 0.082 0.093 0.017 18.4 20 0.07 0.13

2006/2007 0.092 0.105 0.017 16.1 12 0.08 0.14

2007/2008 0.074 0.085 0.014 16 66 0.06 0.12

Table 27: Estimates of the total TSS load (Mt) assuming error structure 3 (α1 = 0.3,α2 = 0.1).

Water Year L̂ L̂c SE CV (%) n CIL CIU

2000/2001 0.09 0.104 0.03 30.5 5 0.06 0.19

2001/2002 0.014 0.016 0.01 34.7 4 0.01 0.03

2002/2003 0.021 0.024 0.01 34.5 8 0.01 0.05

2003/2004 0.078 0.09 0.03 29.8 28 0.05 0.16

2004/2005 0.034 0.038 0.01 32.9 3 0.02 0.07

2005/2006 0.082 0.093 0.03 31.1 20 0.05 0.17

2006/2007 0.092 0.105 0.03 29.7 12 0.06 0.19

2007/2008 0.074 0.085 0.03 29.6 66 0.05 0.15

Table 28: Estimates of the total TSS load (Mt) assuming error structure 4 (α1 = 0.5,α2 = 0.2).

Water Year L̂ L̂c SE CV (%) n CIL CIU

2000/2001 0.09 0.104 0.06 59.4 5 0.03 0.33

2001/2002 0.014 0.016 0.01 65.6 4 0 0.06

2002/2003 0.021 0.024 0.02 64.5 8 0.01 0.08

2003/2004 0.078 0.09 0.05 57.2 28 0.03 0.27

2004/2005 0.034 0.038 0.02 63.7 3 0.01 0.13

2005/2006 0.082 0.093 0.05 58.7 20 0.03 0.3

2006/2007 0.092 0.105 0.06 58 12 0.03 0.33

2007/2008 0.074 0.085 0.05 57.6 66 0.03 0.26
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